A non-local problem with integral conditions of the first kind for the string vibration equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 8-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we consider a problem with nonlocal integral conditions of the 1st kind for the one-dimensional wave equation. The kernels of the integral conditions depend on both spatial and time variables. In order to study this problem we reduce first the integral conditions of the 1st kind to the integral conditions of the 2nd kind. Under certain additional assumptions these nonlocal conditions are equivalent. Obtained restriction on input data enable to show uniqurness of generalized solution to the problem.
Keywords: hyperbolic equation, nonlocal problem, integral conditions, generalized solution.
@article{VSGU_2023_29_3_a1,
     author = {Y. S. Buntova},
     title = {A non-local problem with integral conditions of the first kind for the string vibration equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {8--17},
     year = {2023},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a1/}
}
TY  - JOUR
AU  - Y. S. Buntova
TI  - A non-local problem with integral conditions of the first kind for the string vibration equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2023
SP  - 8
EP  - 17
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a1/
LA  - ru
ID  - VSGU_2023_29_3_a1
ER  - 
%0 Journal Article
%A Y. S. Buntova
%T A non-local problem with integral conditions of the first kind for the string vibration equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2023
%P 8-17
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a1/
%G ru
%F VSGU_2023_29_3_a1
Y. S. Buntova. A non-local problem with integral conditions of the first kind for the string vibration equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 8-17. http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a1/

[1] Ladyzhenskaya O.A., Boundary value problems of mathematical physics, Nauka, M., 1973, 407 pp. (In Russ.)

[2] Pul'kina L.S., “Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Mathematics, 56:4 (2012), 62–69 (In English; original in Russian) | DOI | MR | Zbl

[3] Pul'kina L.S., monograph, Izdatel'stvo “Samarskii universitet”, Samara, 2012, 194 pp. (In Russ.)

[4] Dmitriev V.B., “A non-local problem with integral conditions for a wave equation”, Vestnik of Samara State University. Natural Science Series, 2006, no. 2(42), 15–27 (In Russ.)

[5] Cannon J.R., “The solution of the heat equation subject to the specification of energy”, Quarterly of Applied Mathematics, 21 (1963), 155–160 | DOI | MR

[6] Ionkin N.I., “The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition”, Differential Equations, 13:2 (1977), 294–304 (In Russ.) | MR | Zbl

[7] Kamynin L.I., “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 33–59 (In English; original in Russian) | DOI | MR

[8] Pulkina L.S., “The $L_2$ solvability of a nonlocal problem with integral conditions for a hyperbolic equation”, Differential Equations, 36:2 (2000), 316–318 (In English; original in Russian) | DOI | MR | Zbl

[9] Pulkina L.S., “A non-local problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels”, Russian Mathematics, 56:10 (2012), 26–37 (in English; original in Russian) | DOI | MR | Zbl

[10] Pulkina L.S., Savenkova A.E., “A problem with second kind integral conditions for hyperbolic equation”, Vestnik of Samara University. Natural Science Series, 2016, no. 1-2, 33–45 (In Russ.) | Zbl

[11] Pulkina L.S., “A Nonlocal Problem with Integral Conditions for a Hyperbolic Equation”, Differential Equations, 40:7 (2004), 887–892 (In English; original in Russian) | DOI | MR | Zbl