A non-local problem with integral conditions of the first kind for the string vibration equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 8-17
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, we consider a problem with nonlocal integral conditions of the 1st kind for the one-dimensional wave equation. The kernels of the integral conditions depend on both spatial and time variables. In order to study this problem we reduce first the integral conditions of the 1st kind to the integral conditions of the 2nd kind. Under certain additional assumptions these nonlocal conditions are equivalent. Obtained restriction on input data enable to show uniqurness of generalized solution to the problem.
Keywords:
hyperbolic equation, nonlocal problem, integral conditions, generalized solution.
@article{VSGU_2023_29_3_a1,
author = {Y. S. Buntova},
title = {A non-local problem with integral conditions of the first kind for the string vibration equation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {8--17},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a1/}
}
TY - JOUR AU - Y. S. Buntova TI - A non-local problem with integral conditions of the first kind for the string vibration equation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2023 SP - 8 EP - 17 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a1/ LA - ru ID - VSGU_2023_29_3_a1 ER -
%0 Journal Article %A Y. S. Buntova %T A non-local problem with integral conditions of the first kind for the string vibration equation %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2023 %P 8-17 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a1/ %G ru %F VSGU_2023_29_3_a1
Y. S. Buntova. A non-local problem with integral conditions of the first kind for the string vibration equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 8-17. http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a1/