@article{VSGU_2023_29_3_a1,
author = {Y. S. Buntova},
title = {A non-local problem with integral conditions of the first kind for the string vibration equation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {8--17},
year = {2023},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a1/}
}
TY - JOUR AU - Y. S. Buntova TI - A non-local problem with integral conditions of the first kind for the string vibration equation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2023 SP - 8 EP - 17 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a1/ LA - ru ID - VSGU_2023_29_3_a1 ER -
%0 Journal Article %A Y. S. Buntova %T A non-local problem with integral conditions of the first kind for the string vibration equation %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2023 %P 8-17 %V 29 %N 3 %U http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a1/ %G ru %F VSGU_2023_29_3_a1
Y. S. Buntova. A non-local problem with integral conditions of the first kind for the string vibration equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 8-17. http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a1/
[1] Ladyzhenskaya O.A., Boundary value problems of mathematical physics, Nauka, M., 1973, 407 pp. (In Russ.)
[2] Pul'kina L.S., “Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Mathematics, 56:4 (2012), 62–69 (In English; original in Russian) | DOI | MR | Zbl
[3] Pul'kina L.S., monograph, Izdatel'stvo “Samarskii universitet”, Samara, 2012, 194 pp. (In Russ.)
[4] Dmitriev V.B., “A non-local problem with integral conditions for a wave equation”, Vestnik of Samara State University. Natural Science Series, 2006, no. 2(42), 15–27 (In Russ.)
[5] Cannon J.R., “The solution of the heat equation subject to the specification of energy”, Quarterly of Applied Mathematics, 21 (1963), 155–160 | DOI | MR
[6] Ionkin N.I., “The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition”, Differential Equations, 13:2 (1977), 294–304 (In Russ.) | MR | Zbl
[7] Kamynin L.I., “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 33–59 (In English; original in Russian) | DOI | MR
[8] Pulkina L.S., “The $L_2$ solvability of a nonlocal problem with integral conditions for a hyperbolic equation”, Differential Equations, 36:2 (2000), 316–318 (In English; original in Russian) | DOI | MR | Zbl
[9] Pulkina L.S., “A non-local problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels”, Russian Mathematics, 56:10 (2012), 26–37 (in English; original in Russian) | DOI | MR | Zbl
[10] Pulkina L.S., Savenkova A.E., “A problem with second kind integral conditions for hyperbolic equation”, Vestnik of Samara University. Natural Science Series, 2016, no. 1-2, 33–45 (In Russ.) | Zbl
[11] Pulkina L.S., “A Nonlocal Problem with Integral Conditions for a Hyperbolic Equation”, Differential Equations, 40:7 (2004), 887–892 (In English; original in Russian) | DOI | MR | Zbl