Entanglement in nonlinear two-qubit Tavis — Cummings model
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 2, pp. 72-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, we have studied the dynamics of entanglement of two identical superconducting qubits resonantly interacting with the one-mode field of a coplanar microwave cavity without loss through single-photon transitions in the presence of third- and fifth-order nonlinearities. Based on the solution of the equation of evolution of the system for the Fock initial states of the cavity field, the criterion of qubits entanglement – negativity is calculated. The results of the negativity calculation show that for the initial separable states, the cavity nonlinearity can lead to a significant increase in the maximum degree of qubit entanglement. It is shown that for the initial entangled states of qubits and intense cavity fields, taking into account nonlinearities leads to stabilization of the degree of entanglement of qubits in the cavity and contributes to the disappearance of the effect of the entanglement sudden death of qubits.
Keywords: qubits, resonant interaction, nonlinear cavity, fock state of the cavity field, negativity, sudden death of entanglement.
Mots-clés : entanglement
@article{VSGU_2023_29_2_a6,
     author = {R. K. Zakharov and E. K. Bashkirov},
     title = {Entanglement in nonlinear two-qubit {Tavis~{\textemdash}} {Cummings} model},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {72--80},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a6/}
}
TY  - JOUR
AU  - R. K. Zakharov
AU  - E. K. Bashkirov
TI  - Entanglement in nonlinear two-qubit Tavis — Cummings model
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2023
SP  - 72
EP  - 80
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a6/
LA  - ru
ID  - VSGU_2023_29_2_a6
ER  - 
%0 Journal Article
%A R. K. Zakharov
%A E. K. Bashkirov
%T Entanglement in nonlinear two-qubit Tavis — Cummings model
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2023
%P 72-80
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a6/
%G ru
%F VSGU_2023_29_2_a6
R. K. Zakharov; E. K. Bashkirov. Entanglement in nonlinear two-qubit Tavis — Cummings model. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 2, pp. 72-80. http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a6/

[1] Jaynes E.T., “Comparison of quantum and semiclassical radiation theory with application to the beam maser”, Proceedings of the IEEE, 51:1 (1963), 89–109 | DOI

[2] Shore B.W., Knight P.L., “The Jaynes-Cummings model”, Journal of Modern Optics, 40:7 (1993), 1195–1238 | DOI | MR | Zbl

[3] Buluta I., Ashhab S., Nori F., “Natural and artificial atoms for quantum computation”, Reports on Progress in Physics, 74:10 (2011), 104401 | DOI

[4] Xiang Z.L., Ashhab S., You J.Y., Nori F., “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems”, Reviews of Modern Physics, 85:2 (2013), 623–653 | DOI

[5] Gu X., Kockum A.F., Miranowicz A., Liu Y.X., Nori F., “Microwave photonics with superconducting quantum circuits”, Physics Reports, 718–719 (2017), 1–102 | DOI | MR | Zbl

[6] Georgescu I.M., Ashhab S., Nori P., “Quantum simulation”, Reviews of Modern Physics, 86:1 (2014), 153–185 | DOI

[7] Wendin G., “Quantum information processing with super-conducting circuits: a review”, Reports on Progress in Physics, 80:10 (2017), 106001 | DOI | MR

[8] Huang H.-L., Wu D., Fan D., Zhu X., “Superconducting Quantum Computing: A Review”, Science China. Information Sciences, 63 (2020), 180501 | DOI | MR

[9] Kjaergaard M., Schwartz M.E., Braumüller J., Krantz P., Wang I.-J., Gustavsson S., Oliver W.D., “Superconducting Qubits: Current State of Play”, Annual Review of Condensed Matter Physics, 11 (2020), 369–395 | DOI

[10] Du S., Feng H., “Dynamics of Entanglement in the Cavity with Nonlinear Medium”, Journal of Modern Physics, 4:5 (2013), 604–607 | DOI

[11] De los Santos-Sánchez O., Gonz$\rm \acute{a}$lez-Guti$\rm \acute{e}$rrez C., R$\rm \acute{e}$camier J., “Nonlinear Jaynes-Cummings model for two interacting two-level atoms”, Journal of Physics B: Atomic Molecular and Optical Physics, 49:16 (2016), 165503 | DOI

[12] Góomez-Rosas R., González-Gutiérrez C.A., Torres J.M., “Entangling operations in nonlinear two-atom Tavis-Cummings models”, Physical Review A, 104:6 (2021), 063701 | DOI | MR

[13] Obada A.-S.F., Ahmed M.M.A., Habeba H.F., “Some Statistical Properties for a Non-Linear Tavis — Cummings Model”, Applied Mathematics Information Sciences, 11:1 (2017), 147–154 | DOI | MR

[14] Yu D., Kwek L.C., Amico L., Dumke R., “Nonlinear circuit quantum electrodynamics based on the charge-qubit-resonator interface”, Physical Review A, 98:3 (2018), 033833 | DOI | MR

[15] Chen Q., Wen J., Yang W.L., Feng M., Du J., “Nonlinear coupling between a nitrogen-vacancy-center ensemble and a superconducting qubit”, Optics Express, 23:2 (2015), 1615–1626 | DOI

[16] Bashkirov E.K., “Entanglement in Tavis-Cummings model with Kerr nonlinearity induced by a thermal noise”, Saratov Fall Meeting 2020: Laser Physics, Photonic Technologies, and Molecular Modeling, Proc. SPIE, 11846, 4 May 2021, 118460W | DOI | MR

[17] Bashkirov E.K., “Thermal entanglement in Tavis-Cummings models with Kerr media”, Laser Physics, Photonic Technologies, and Molecular Modeling, Proc. SPIE, 12193, 29 April 2022, 121930Q | DOI

[18] Bertet P., Ong F. R., Boissonneault M., Bolduc A., Mallet F., Doherty A.C., Blais A., Vion D., Esteve D., Circuit quantum electrodynamics with a nonlinear resonator, 2011, arXiv: 1111.0501v1 [quant-ph] | DOI | MR

[19] Peres A., “Separability Criterion for Density Matrices”, Physical Review Letters, 77:8 (1996), 1413–1415 | DOI | MR | Zbl

[20] Horodecki R., Horodecki M., Horodecki P., “Separability of Mixed States: Necessary and Sufficient Condition”, Physics Letters A, 223:1 (1996), 1–8 | DOI | MR | Zbl

[21] Kim M.S., Lee J., Ahn D., Knight P.L., “Entanglement induced by a single-mode heat environment”, Physical review A. Atomic, molecular, and optical physics, 65:4 (2002), 040101(R) | DOI

[22] Yu T., Eberly J.H., “Environment-Induced Sudden Death of Entanglement”, Physical Review Letters, 93 (2004), 140104

[23] Sadiek G., Al-Drees W., Abdallah M.S., “Manipulating entanglement sudden death in two coupled two-level atoms interacting off-resonance with a radiation field: an exact treatment”, Optics Express, 27:23 (2019), 33799–33825 | DOI