Entanglement between two superconducting charge qubits
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 2, pp. 62-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we investigated the dynamics of entanglement of two identical charge qubits with Josephson junctions in the case when one of the qubits is exposed to a microwave field in a coherent or thermal state. We have found the exact solution of the quantum time equation of evolution of the system under consideration for the statistical operator in the case of initial separable and entangled states of qubits. The exact solution for the complete statistical operator is used to calculate the qubit entanglement criterion - concurrence. The results of numerical simulation of the time dependence of the concurrence in the case of the coherent field showed that, with a certain choice of model parameters, the system can realize long-lived entangled states. It is also shown that for the thermal state of the field and the entangled initial state of qubits, the qubits retain a certain degree of entanglement during evolution even in the case of very intensive fields. In this case, for any intensities of thermal noise, there is no effect of the sudden death of entanglement.
Keywords: charge qubits, microwave field, coherent state, thermal state, sudden death of entanglement.
Mots-clés : entanglement, concurrence
@article{VSGU_2023_29_2_a5,
     author = {E. K. Bashkirov},
     title = {Entanglement between two superconducting charge qubits},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {62--71},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a5/}
}
TY  - JOUR
AU  - E. K. Bashkirov
TI  - Entanglement between two superconducting charge qubits
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2023
SP  - 62
EP  - 71
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a5/
LA  - ru
ID  - VSGU_2023_29_2_a5
ER  - 
%0 Journal Article
%A E. K. Bashkirov
%T Entanglement between two superconducting charge qubits
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2023
%P 62-71
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a5/
%G ru
%F VSGU_2023_29_2_a5
E. K. Bashkirov. Entanglement between two superconducting charge qubits. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 2, pp. 62-71. http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a5/

[1] X. Gu X., Kockum A.F., Miranowicz A., Liu Y.X., Nori F., “Microwave photonics with superconducting quantum circuits”, Physics Reports, 718–719 (2017), 1–102 | DOI | MR | Zbl

[2] Wendin G., “Quantum information processing with super-conducting circuits: a review”, Reports on Progress in Physics, 80:10 (2017), 106001 | DOI | MR

[3] Kjaergaard M., Schwartz M.E., Braum$\ddot{u}$ller J., Krantz P., Wang J.-I., Gustavsson S., Oliver W.D., “Superconducting Qubits: Current State of Play”, Annual Reviews of Condensed Matter Physics, 11 (2020), 369–395 | DOI

[4] Huang H.-L., Wu D., Fan D., Zhu X., “Superconducting quantum computing: a review”, Science China Information Sciences, 63 (2020), 180501 | DOI | MR

[5] Chen J., “Review on Quantum Communication and Quantum Computation”, Journal of Physics: Conference Series, 1865 (2021), 022008 | DOI

[6] Pashkin Yu.A.,·Astafiev O.,·Yamamoto T., Nakamura Y., Tsai J.S., “Josephson charge qubits: a brief review”, Quantum Information Processing, 8 (2009), 55–80 | DOI

[7] Shi J., “Entanglement Research for the Coupled Superconducting Phase Qubit and a Two-Level System”, Advances in Condensed Matter Physics, 2020 (2020), 3838106 | DOI

[8] Berrada K., Abdel-Khalek S., Algarni M., “Coherence, purity and correlation for superconducting charge qubits”, Results in Physics, 48 (2023), 106414 | DOI

[9] Mohamed A.-B.A., Rahman A.U., Eleuch H., “Measurement Uncertainty, Purity, and Entanglement Dynamics of Maximally Entangled Two Qubits Interacting Spatially with Isolated Cavities: Intrinsic Decoherence Effect”, Entropy, 24:4 (2022), 545 | DOI | MR

[10] Abdel-Khalek S., Berrada K., Khalil E.M., Eleuch H., Obada A.-S.F., Reda E., “Tavis-Cummings Model with Moving Atoms”, Entropy, 23:4 (2021), 452 | DOI | MR

[11] Movahedi R., Afshar D., Jafarpour M., “Improvement of the entanglement generation in atomic states using a single-mode field in the Tavis-Cummings model”, The European Physical Journal D, 77 (2023), 59 | DOI | MR

[12] Abdel-Khalek S., Berrada K., Khalil E.M., Obada A.-S. F., Reda E., Eleuch H., “Quantumness Measures for a System of Two Qubits Interacting with a Field in the Presence of the Time-Dependent Interaction and Kerr Medium”, Entropy, 23:5 (2021), 635 | DOI | MR

[13] Algarni M., Berrada, K., Abdel-Khalek S., Eleuch H., “Parity Deformed Tavis-Cummings Model: Entanglement, Parameter Estimation and Statistical Properties”, Mathematics, 10:17 (2022), 3051 | DOI | MR

[14] Ali S.I., “Influence of deformed cavity field and atomic dipole interaction on the quantum correlations of two.qubit system”, Optical and Quantum Electronics, 55 (2023), 47 | DOI

[15] Wootters W.K., “Entanglement of Formation of an Arbitrary State of Two Qubits”, Physical Review Letters, 80:10 (1998), 2245–2248 | DOI | Zbl

[16] Peres A., “Separability Criterion for Density Matrices”, Physical Review Letters, 77:8 (1996), 1413–1415 | DOI | MR | Zbl

[17] Horodecki R., Horodecki M., Horodecki P., “Separability of Mixed States: Necessary and Sufficient Condition”, Physics Letters A, 223 (1996), 333–339 | DOI | MR

[18] He X.-L., Liu Y.-X., You J.Q., Franco Nori F., “Variable-frequency-controlled coupling in charge qubit circuits: Effects of microwave field on qubit-state readout”, Physical Review A. Atomic, molecular and optical physics, 76:2 (2007), 22317 | DOI

[19] Liao Q.-H., Fang G.-Yu, Wang J.-C., Ahmad M.A., Liu S.-T., “Control of the Entanglement between Two Josephson Charge Qubits”, Chinese Physics Letters, 28:6 (2011), 060307 | DOI

[20] Kim M.S., Lee J., Ahn D., Knight P.L., “Entanglement induced by a single-mode heat environment”, Physical Review A. Atomic, molecular and optical physics, 65:4 (2002), 040101 | DOI

[21] Yu T., Eberly J. H., “Sudden death of entanglement”, Science, 323:5914 (2009), 598–601 | DOI | MR | Zbl