Equivariant properties of the space $ {\mathbb Z} (X) $ for a stratifiable space $ X $
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 2, pp. 40-47
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove the action of the compact group $ G $ defined by the stratified space $ X $ is continuous to the space $ Z (X) $ being a stratified space containing the self-stratified space $ X $ as a closed subset. An equivariant analogue of some results of R. Cauty concerning $ A (N) R (S) $ – spaces is proved. It is presented that the orbit space $ Z (X) / G $ by the action of the group $ G $ is a $ S $ space.
Keywords:
equivariant maps, stratified space, homotopy density, absolute extensor, neighborhood extensor, covariant functor, probabilistic measures.
Mots-clés : group actions, orbit space, invariant set, dimension
Mots-clés : group actions, orbit space, invariant set, dimension
@article{VSGU_2023_29_2_a3, author = {T. F. Zhuraev and M. V. Dolgopolov}, title = {Equivariant properties of the space $ {\mathbb Z} (X) $ for a stratifiable space $ X $}, journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a}, pages = {40--47}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a3/} }
TY - JOUR AU - T. F. Zhuraev AU - M. V. Dolgopolov TI - Equivariant properties of the space $ {\mathbb Z} (X) $ for a stratifiable space $ X $ JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2023 SP - 40 EP - 47 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a3/ LA - en ID - VSGU_2023_29_2_a3 ER -
%0 Journal Article %A T. F. Zhuraev %A M. V. Dolgopolov %T Equivariant properties of the space $ {\mathbb Z} (X) $ for a stratifiable space $ X $ %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2023 %P 40-47 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a3/ %G en %F VSGU_2023_29_2_a3
T. F. Zhuraev; M. V. Dolgopolov. Equivariant properties of the space $ {\mathbb Z} (X) $ for a stratifiable space $ X $. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 2, pp. 40-47. http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a3/