Equivariant properties of the space $ {\mathbb Z} (X) $ for a stratifiable space $ X $
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 2, pp. 40-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we prove the action of the compact group $ G $ defined by the stratified space $ X $ is continuous to the space $ Z (X) $ being a stratified space containing the self-stratified space $ X $ as a closed subset. An equivariant analogue of some results of R. Cauty concerning $ A (N) R (S) $ – spaces is proved. It is presented that the orbit space $ Z (X) / G $ by the action of the group $ G $ is a $ S $ space.
Keywords: equivariant maps, stratified space, homotopy density, absolute extensor, neighborhood extensor, covariant functor, probabilistic measures.
Mots-clés : group actions, orbit space, invariant set, dimension
@article{VSGU_2023_29_2_a3,
     author = {T. F. Zhuraev and M. V. Dolgopolov},
     title = {Equivariant properties of the space $ {\mathbb Z} (X) $ for a stratifiable space $ X $},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {40--47},
     year = {2023},
     volume = {29},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a3/}
}
TY  - JOUR
AU  - T. F. Zhuraev
AU  - M. V. Dolgopolov
TI  - Equivariant properties of the space $ {\mathbb Z} (X) $ for a stratifiable space $ X $
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2023
SP  - 40
EP  - 47
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a3/
LA  - en
ID  - VSGU_2023_29_2_a3
ER  - 
%0 Journal Article
%A T. F. Zhuraev
%A M. V. Dolgopolov
%T Equivariant properties of the space $ {\mathbb Z} (X) $ for a stratifiable space $ X $
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2023
%P 40-47
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a3/
%G en
%F VSGU_2023_29_2_a3
T. F. Zhuraev; M. V. Dolgopolov. Equivariant properties of the space $ {\mathbb Z} (X) $ for a stratifiable space $ X $. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 2, pp. 40-47. http://geodesic.mathdoc.fr/item/VSGU_2023_29_2_a3/

[1] Borges C.R., “On stratifiable spaces”, Pacific Journal on Mathematics, 17:1 (1966), 1–16 | DOI | MR | Zbl

[2] Cauty R., “Retractions dans les espaces stratifiables”, Bulletin de la Societe Mathematique de France, 102 (1972), 129–149 | DOI | MR

[3] Pflaum Markus J., “Analytic and geometric study of stratified spaces”, Contributions to Analytic and Geometric Aspects, Lecture Notes in Mathematics, 1768, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl

[4] Crainic M., Mestre João Nuno, “Orbispaces as differentiable stratified spaces”, Letters in Mathematical Physics, 108 (2018), 805–859 | DOI | MR | Zbl

[5] Ethan Ross, Stratified Vector Bundles: Examples and Constructions, 2023, arXiv: 2303.04200 | DOI

[6] Borges C.R., “A study of absolute extensor spaces”, Pacific Journal on Mathematics, 31:2 (1969), 609–617 | DOI | MR | Zbl

[7] Borsuk K., The theory of retracts, Panstwowe Wydawn. Naukowe, Warsawa, 1971, 251 pp. https://archive.org/details/theoryofretracts0000bors | MR

[8] Hall Brian C., Quantum Theory for Mathematicians, Graduate Texts in Mathematics, 267, Springer, New York, 2013 | DOI | MR | Zbl

[9] Cauty R., Guo Bao-Lin, Sakai K., “The huperspaces of finite subsets of stratifiable spaces”, Fundamenta Mathematicae, 147:1 (1995), 1–9 | DOI | MR | Zbl

[10] Zhuraev T.F., “Equivariant analogs of some geometric and topological properties on stratified spaces $X$”, West. Kirg. Nat. University Named after Bolasagyn Zhasup, 2014, no. 1, 23–27

[11] Aleksandrov P.S., Pasynkov B.A., Introduction to the theory of dimension, Nauka, M., 1973, 575 pp. (In Russ.)

[12] Zhuraev T.F., Some geometric properties of the functor of probabilistic measures and its subfunctors, Candidate's of Physical and Mathematical Sciences thesis, Moscow State University, M., 1989, 90 pp. (In Russ.) | Zbl

[13] Banakh T., Radul T., Zarichniy M., Absorbing sets in infinite–dimensional manifolds, v. 1, VNTL Publishers, Lviv, 1996, 232 pp. | MR | Zbl

[14] Zhuraev T.F., “Dimension of paracompact $ \sigma$-spaces and functors of finite degree”, DAN of Uzbekistan, 1992, no. 4, 15–18 (In Russ.)

[15] Bredon G., Introduction to the theory of compact transformation groups, Nauka, M., 1980 (In Russ.)