Mots-clés : one-photon transitions, entanglement
@article{VSGU_2023_29_1_a5,
author = {A. R. Bagrov and E. K. Bashkirov},
title = {Entanglemnt in nonlinear three-qubits {Jaynes~{\textemdash}} {Cummings} model},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {89--101},
year = {2023},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_1_a5/}
}
TY - JOUR AU - A. R. Bagrov AU - E. K. Bashkirov TI - Entanglemnt in nonlinear three-qubits Jaynes — Cummings model JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2023 SP - 89 EP - 101 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGU_2023_29_1_a5/ LA - ru ID - VSGU_2023_29_1_a5 ER -
A. R. Bagrov; E. K. Bashkirov. Entanglemnt in nonlinear three-qubits Jaynes — Cummings model. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 1, pp. 89-101. http://geodesic.mathdoc.fr/item/VSGU_2023_29_1_a5/
[1] Kendon V.M., Nemoto K., Munro W.J., “Typical entanglement in multi-qubit systems”, Journal of Modern Optics, 49:10 (2002), 1709–1716 | DOI | MR | Zbl
[2] Most Y., Shimoni Y., Biham O., “Formation of multipartite entanglement using random quantum gates”, Physical Review A: Atomic, molecular, and optical physics, 76:2 (2007), 022328 | DOI | MR
[3] Zhi P., Hu Y., “Construct maximally five- and seven-qubit entangled states via three-qubit GHZ state”, International Journal of Theoretical Physics, 36:30 (2022), 2250215 | DOI | MR
[4] Kazuyuki F., Kyoko H., Ryosuke K., Tatsuo S., Yukako W., “Explicit Form of the Evolution Operator of TAVIS-CUMMINGS Model: Three and Four Atoms Cases”, International Journal of Geometric Methods in Modern Physics, 1:6 (2012), 721–730 | DOI
[5] Rinner S.J., Pittorino T., “Generation of Multipartite Entangled States Using Switchable Coupling of Cooper-Pair-Boxes”, Journal of Modern Physics, 11:10 (2020), 1514–1527 | DOI
[6] Wendin G., “Quantum information processing with super-conducting circuits: a review”, Reports on Progress in Physics, 80:10 (2017), 106001 | DOI | MR
[7] Kjaergaard M., Schwartz M.E., Braumüller J., Krantz P., Wang J.-I., Gustavsson S., Oliver W.D., “Superconducting Qubits: Current State of Play”, Annual Reviews of Condensed Matter Physics, 11 (2020), 369–395 | DOI
[8] Huang H.-L., Wu D., Fan D., Zhu X., “Superconducting quantum computing: a review”, Science China. Information Sciences, 63 (2020), 180501 | DOI | MR
[9] Chen J., “Review on Quantum Communication and Quantum Computation”, Journal of Physics: Conference Series, 1865 (2021), 022008 | DOI
[10] Biamonte J., Faccin M., De Domenico M., “Complex Networks: from Classical to Quantum”, Communications Physics, 2 (2019), 53 | DOI
[11] Mooney G.J., Hill C.D., Hollenberg L.C.L., “Entanglement in a 20-Qubit Superconducting Quantum Computer”, Scientific Reports, 9 (2019), 13465 | DOI
[12] Apollaro T. J. G., Lorenzo S., Plastina F., Consiglio M., Zyczkowski K., “Entangled States Are Harder to Transfer than Product States”, Entropy, 25:1 (2023), 46 | DOI | MR
[13] Nieman K., Rangan K.K., Durand H., “Control Implemented on Quantum Computers: Effects of Noise, Nondeterminism, and Entanglement”, Industrial and Engineering Chemistry Research, 61:28 (2022), 10133–10155 | DOI
[14] Arute F. et al., “Quantum supremacy using a programmable superconducting processor”, Nature, 574 (2019), 505–510 | DOI
[15] Ball P., “First quantum computer to pack 100 qubits enters crowded race”, Nature, 599:7886 (2021), 542 | DOI
[16] Lacroix D., “Symmetry-Assisted Preparation of Entangled Many-Body States on a Quantum Computer”, Physical Review Letters, 125 (2020), 230502 | DOI | MR
[17] Peres A., “Separability Criterion for Density Matrices”, Physical Review Letters, 77 (1996), 1413–1415 | DOI | MR | Zbl
[18] Horodecki R., Horodecki M., Horodecki P., “Separability of Mixed States: Necessary and Sufficient Condition”, Physics Letters A, 223 (1996), 333–339 | DOI | MR
[19] Wootters W.K., “Entanglement of Formation of an Arbitrary State of Two Qubits”, Physical Review Letters, 80:10 (1998), 2245 | DOI | Zbl
[20] Zha X., Yuan C., Zhang Y., “Generalized criterion for a maximally multi-qubit entangled state”, Laser Physics Letters, 10:4 (1998), 045201 | DOI
[21] Filippov S.N., “Quantum Mappings and Characterization of Entangled Quantum States”, Journal of Mathematical Sciences, 241 (2019), 210–236 | DOI | MR | Zbl
[22] Seevinck M., Gühne O., “Separability criteria for genuine multiparticle entanglement”, New Journal of Physics, 12 (2010), 053002 | DOI | Zbl
[23] Pereira L., Zambrano L., Delgado A., “Scalable estimation of pure multi-qubit states”, npj Quantum Information, 8 (2022), 57 | DOI
[24] Zhahir A. A., Mohd S. M., Shuhud M.I.M., Idrus B., Zainuddin H., Jan N.M., Wahiddin M., “Entanglement Quantification and Classification: A Systematic Literature Review”, International Journal of Advanced Computer Science and Applications, 13:5 (2022), 218–225 | DOI
[25] Dur W., Cirac J.I., “Classification of multiqubit mixed states: Separability and distillability properties”, Physical Review A: Atomic, molecular and optical physics, 61 (2000), 042314 | DOI | MR
[26] Dur W., Cirac J.I., Vidal G., “Three qubits can be entangled in two inequivalent ways”, Physical Review A: Atomic, molecular, and optical physics, 62 (2000), 062314 | DOI | MR
[27] Acin A., Bruß D., Lewenstein M., Sanpera A., “Classification of Mixed Three-Qubit States”, Physical Review Letters, 87 (2000), 040401 | DOI | MR
[28] Garcia-Alcaine G., Sabin C., “A classification of entanglement in three-qubit systems”, The European Physical Journal D, 48 (2008), 435–442 | DOI | MR
[29] Siti Munirah Mohd S.M., Idrus B., Zainuddin H., Mukhtar M., “Entanglement Classification for a Three-qubit System using Special Unitary Groups”, International Journal of Advanced Computer Science and Applications, 10:7 (2019), 374–379 | DOI
[30] Akbari-Kourbolagh Y., “Entanglement criteria for the three-qubit states”, International Journal of Quantum Information, 15:7 (2017), 1750049 | DOI | MR | Zbl
[31] Bagrov A.R., Bashkirov E.K., “Dynamics of the three-qubits Tavis - Cummings model”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 28:1–2 (2022), 95–105 (In Russ.) | DOI | MR
[32] Zhang B., “Entanglement between two qubits interacting with a slightly detuned thermal field”, Optics Communications, 283:23 (2010), 4676–4679 | DOI
[33] Bashkirov E.K., “Thermal Entanglement Between a Jaynes — Cummings Atom and an Isolated Atom”, International Jornal of Theoretical Physics, 57:12 (2018), 3761–3771 | DOI | Zbl
[34] Al Naim A.F., Khan J.Y., Khalil E.M., Abdel-Khalek S., “Effects of Kerr Medium and Stark Shift Parameter on Wehrl Entropy and the Field Purity for Two-Photon Jaynes-Cummings Model Under Dispersive Approximation”, Journal of Russian Laser Research, 40:1 (2019), 20–29 | DOI
[35] Aldaghfag S.A., Berrada K., Abdel-Khalek S., “Entanglement and photon statistics of two dipole-dipole coupled superconducting qubits with Kerr-like nonlinearities”, Results in Physics, 16 (2020), 102978 | DOI
[36] Bashkirov E.K., “Thermal entanglement in Tavis-Cummings models with Kerr media”, Proceedings of SPIE, 12193, 2022, 121930Q | DOI | MR