On sparse approximations of solutions to linear systems with orthogonal matrices
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 1, pp. 7-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article discusses a model for obtaining a sparse representation of a signal vector in $\mathbb{R}^k$, based on a system of linear equations with an orthogonal matrix. Such a representation minimizes a target function that combines the deviation from the exact solution and a chosen functional $J$. The functionals chosen are the Euclidean norm, the norm $|\cdot|_1$, and the quasi-norm $|\cdot|_0$. The Euclidean norm only allows for the exact solution, while the other two allow for a balance between the residual and the parameter $\lambda$ in the functional, resulting in sparser solutions. Graphs are plotted showing the dependence between the coordinates of the optimal vector and the parameter $\lambda$, and examples are provided.
Keywords: sparse representations, objective function, minimization of the objective function, norms, pseudonorms, admissible error level.
@article{VSGU_2023_29_1_a0,
     author = {A. V. Kiptenko and I. M. Izbiakov},
     title = {On sparse approximations of solutions to linear systems with orthogonal matrices},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--14},
     year = {2023},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_1_a0/}
}
TY  - JOUR
AU  - A. V. Kiptenko
AU  - I. M. Izbiakov
TI  - On sparse approximations of solutions to linear systems with orthogonal matrices
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2023
SP  - 7
EP  - 14
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2023_29_1_a0/
LA  - ru
ID  - VSGU_2023_29_1_a0
ER  - 
%0 Journal Article
%A A. V. Kiptenko
%A I. M. Izbiakov
%T On sparse approximations of solutions to linear systems with orthogonal matrices
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2023
%P 7-14
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2023_29_1_a0/
%G ru
%F VSGU_2023_29_1_a0
A. V. Kiptenko; I. M. Izbiakov. On sparse approximations of solutions to linear systems with orthogonal matrices. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 1, pp. 7-14. http://geodesic.mathdoc.fr/item/VSGU_2023_29_1_a0/

[1] Elad M., Sparse and Redundant Representations. From Theory to Applications in Signal and Image Processing, Springer, New York, 2010, 376 pp. | DOI | MR | Zbl

[2] Novikov S.Ya., “Processing of sparse signals and mutual coherence of “measurable” vectors”, Lobachevskii Journal of Mathematics, 41:4 (2020), 666–675 | DOI | MR | Zbl

[3] Natarajan B.K., “Sparse approximate solutions to linear systems”, SIAM Journal on Computing, 24:2 (1995), 227–234 | DOI | MR | Zbl

[4] Donoho D.L., Elad M., “Optimally sparse representation in general (nonorthogonal) dictionaries via $\ell_1$ minimization”, Proceedings of the National Academy of Sciences of the United States of America, 100:5 (2003), 2197–2202 | DOI | MR | Zbl

[5] Candes Emmanuel J., “Compressive sampling”, Proceedings oh the International Congress of Mathematicians, v. 3, 2006, 1433–1452 https://candes.su.domains/publications/downloads/CompressiveSampling.pdf | MR | Zbl

[6] Candes Emmanuel J., “Mathematics of sparsity (and a few other things)”, International Congress of Mathematicians, 2014 https://candes.su.domains/publications/downloads/ICM2014.pdf

[7] Candes Emmanuel J., Romberg J.K., Tao T., Stable Signal Recovery from Incomplete and Inaccurate Measurements, arXiv: math/0503066

[8] Cohen R., Elad M., Milanfar P., Regularization by Denoising via Fixed-Point Projection (RED-PRO), arXiv: 2008.00226v2

[9] Candes Emmanuel J., Plan Ya., Regularization by Denoising via Fixed-Point Projection (RED-PRO), arXiv: 1011.3854v3

[10] Qu Q., Sun Ju, Wright J., Finding a sparse vector in a subspace: Linear sparsity using alternating directions, arXiv: 1412.4659