Reference shape of bodies with finite incompatible deformations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 3-4, pp. 53-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work develops differential-geometric methods for modeling of finite incompatible deformations of hyperelastic solids. Deformation incompatibility can be caused, for example, by inhomogeneous temperature fields and distributed defects. As a result, residual stresses and distortion of geometric shape of the body occur. These factors determine the critical parameters of modern high-precision technologies, in particular, in additive manufacturing technologies. In this regard, the development of methods for their quantitative description is an urgent problem of modern solid mechanics. The application of methods of differential geometry is based on the representation of a body as a smooth manifold equipped with a metric and a non-Euclidean connection. This approach allows one to interpret the body as a global stress-free shape and to formulate the physical response and material balance equations with respect to this shape. Within the framework of the geometric method, deformations are characterized by embeddings of non-Euclidean shape into physical space, which is still considered to be Euclidean. Measures of incompatibility are identified with the invariants of the affine connection, namely, torsion, curvature, and nonmetricity, and the connection itself is determined by the type of physical process.
Keywords: hyperelasticity, residual stresses, non-Euclidean geometry, material metric, material connection, curvature, nonmetricity, moving frame method.
Mots-clés : incompatible deformations, torsion
@article{VSGU_2022_28_3-4_a5,
     author = {S. A. Lychev and K. G. Koifman},
     title = {Reference shape of bodies with finite incompatible deformations},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {53--87},
     year = {2022},
     volume = {28},
     number = {3-4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a5/}
}
TY  - JOUR
AU  - S. A. Lychev
AU  - K. G. Koifman
TI  - Reference shape of bodies with finite incompatible deformations
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2022
SP  - 53
EP  - 87
VL  - 28
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a5/
LA  - ru
ID  - VSGU_2022_28_3-4_a5
ER  - 
%0 Journal Article
%A S. A. Lychev
%A K. G. Koifman
%T Reference shape of bodies with finite incompatible deformations
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2022
%P 53-87
%V 28
%N 3-4
%U http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a5/
%G ru
%F VSGU_2022_28_3-4_a5
S. A. Lychev; K. G. Koifman. Reference shape of bodies with finite incompatible deformations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 3-4, pp. 53-87. http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a5/

[1] Norden A.P. (Ed.), On foundations of geometry. Collection of classical works on Lobachevsky geometry and development of its ideas, GITTL, M., 1956, 530 pp. (In Russ.)

[2] Capecchi D., Ruta G., “Beltrami's continuum mechanics in non-Euclidean spaces”, Proceedings in Applied Mathematics and Mechanics, 15:1 (2015), 703–704 | DOI

[3] Maugin G.A., Continuum Mechanics Through the Twentieth Century: A Concise Historical Perspective, Springer, Dordrecht, 2013, xv+314 pp. | DOI | MR | Zbl

[4] Born M., “Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips”, Annalen der Physik, 335:11 (1909), 1–56 | DOI

[5] Born M., “Zur Kinematik des starren Körpers im System des Relativitätsprinzips”, Göttinger Nachrichten, 2 (1910), 161–179 https://gdz.sub.uni-goettingen.de/id/PPN252457811_1910

[6] Herglotz G., “Über die Mechanik des deformierbaren Körpers vom Standpunkte der Relativitätstheorie”, Annalen der Physik, 341:13 (1911), 493–533 | DOI

[7] Nordström G., “De gravitatietheorie van Einstein en de mechanica van Herglotz”, Versl. Afdeeling Naturk, 25 (1917), 836–843

[8] Bilby B., Bullough R., Smith E., “Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 231:1185 (1955), 263–273 | DOI | MR

[9] Kondo K., “Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint”, Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, Division D-I, v. 1, ed. Kondo K., Gakujutsu Bunken Fukyo-Kai, 1955, 6–17 | MR

[10] Kondo K., “Geometry of elastic deformation and incompatibility”, Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, Division C, v. 1, ed. Kondo K., Gakujutsu Bunken Fukyo-Kai, 1955, 5–17 | MR

[11] Kondo K., “Non-Riemannian and Finslerian approaches to the theory of yielding”, International Journal of Engineering Science, 1:1 (1963), 71–88 | DOI | Zbl

[12] Kondo K., “On the analytical and physical foundations of the theory of dislocations and yielding by the differential geometry of continua”, International Journal of Engineering Science, 2:3 (1964), 219–251 | DOI | MR | Zbl

[13] Noll W., “Materially uniform simple bodies with inhomogeneities”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 1–32 | DOI | MR

[14] Wang C.-C., “On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 33–94 | DOI | MR | Zbl

[15] Maugin G.A., Material inhomogeneities in elasticity, CRC Press, New York, 1993, 292 pp. | DOI | MR

[16] Marsden J.E., Hughes T.J., Mathematical foundations of elasticity, Courier Corporation, New York, 1994, 576 pp. https://authors.library.caltech.edu/25074/1/Mathematical_Foundations_of_Elasticity.pdf

[17] Epstein M., The Geometrical Language of Continuum Mechanics, Cambridge University Press, Cambridge, 2010, 312 pp. | DOI | MR | Zbl

[18] Epstein M., Elzanowski M., Material inhomogeneities and their evolution: A geometric approach, Springer Science Business Media, Berlin–Heidelberg, 2007, 261 pp. | DOI | MR

[19] Ozakin A., Yavari A., “A geometric theory of thermal stresses”, Journal of Mathematical Physics, 51:3 (2010), 032902 | DOI | MR | Zbl

[20] Yavari A., Goriely A., “Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics”, Archive for Rational Mechanics and Analysis, 205:1 (2012), 59–118 | DOI | MR | Zbl

[21] Yavari A., Goriely A., “Weyl geometry and the nonlinear mechanics of distributed point defects”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468:2148 (2012), 3902–3922 | DOI | MR | Zbl

[22] Sozio F., Yavari A., “Nonlinear mechanics of accretion”, Journal of Nonlinear Science, 29:4 (2019), 1813–1863 | DOI | MR | Zbl

[23] Lychev S., Koifman K., Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics, De Gruyter, Berlin, 2018, 350 pp. | DOI | MR

[24] Lychev S.A., Kostin G.V., Lycheva T.N., Koifman K.G., “Non-Euclidean Geometry and Defected Structure for Bodies with Variable Material Composition”, Journal of Physics: Conference Series, 1250 (2019), 012035 | DOI

[25] Lychev S.A., Koifman K.G., “Material Affine Connections for Growing Solids”, Lobachevskii Journal of Mathematics, 41:10 (2020), 2034–2052 | DOI | MR | Zbl

[26] Lychev S. A., Koifman K. G., “Contorsion of Material Connection in Growing Solids”, Lobachevskii Journal of Mathematics, 42:8 (2021), 1852–1875 | DOI | MR | Zbl

[27] Edgar R.G., “A Review of Bondi-Hoyle-Lyttleton Accretion”, New Astronomy Reviews, 48 (2004), 843–859 | DOI

[28] Lander S.K., Andersson N., Antonopoulou D., Watts A.L., “Magnetically driven crustquakes in neutron stars”, Monthly Notices of the Royal Astronomical Society, 449:2 (2015), 2047–2058 | DOI

[29] Prasanna A., “The Role of Space-Time Curvature in the Study of Plasma Processes Near Neutron Stars and Black Holes”, Bulletin of the Astronomical Society of India, 6:88 (1978) https://www.researchgate.net/publication/234299037_The_Role_of_Space-Time_Curvature_in_the_Study_of_Plasma_Processes_Near_Neutron_Stars_and_Black_Holes

[30] Epstein M., Burton D.A., Tucker R., “Relativistic anelasticity”, Classical and Quantum Gravity, 23:10 (2006), 3545–3571 | DOI | MR | Zbl

[31] Weingarten J., “Sulle superficie di discontinuita nella teoria della elasticita dei corpi solidi”, Rend. Lincei, Serie 5a, X (1901), 57–60 | Zbl

[32] Volterra V., “Sur l'équilibre des corps élastiques multiplement connexes”, Annales scientifiques de l'École Normale Supérieure, 3-e série, 24 (1907), 401–517 | DOI | MR

[33] Frenkel J., “Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper”, Zeitschrift für Physik, 37:7-8 (1926), 572–609 | DOI

[34] Orowan E., “Zur Kristallplastizität. I”, Zeitschrift für Physik, 89:9-10 (1934), 605–613 | DOI

[35] Taylor G.I., “The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 145:855 (1934), 362–387 | DOI | MR

[36] Taylor G.I., “The Mechanism of Plastic Deformation of Crystals. Part II. Comparison with Observations”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 145:855 (1934), 388–404 | DOI | MR

[37] Polanyi M., “Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte”, Zeitschrift für Physik, 89:9-10 (1934), 660–664 | DOI

[38] Eckart C., “The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity”, Physical Review, 73:4 (1948), 373–382 | DOI | MR | Zbl

[39] Lee J.M., Introduction to Smooth Manifolds, Springer, New York, 2012 http://sites.math.washington.edu/l̃ee/Books/ISM | MR

[40] Rudolph G., Schmidt M., Differential Geometry and Mathematical Physics, v. I, Manifolds, Lie Groups and Hamiltonian Systems, Springer Science+Business Media Dordrecht, New York, 2013, 762 pp. | DOI | MR | Zbl

[41] Postnikov M.M., Lections on geometry. Semester II. Linear algebra, URSS, M., 2017, 400 pp. (In Russ.)

[42] Postnikov M.M., Lections on geometry. Semester I. Analytical algebra, URSS, M., 2017, 416 pp. (In Russ.)

[43] Honerkamp J., Römer H., Theoretical Physics: A Classical Approach, Springer, Berlin–Heidelberg, 1993, 1C pp. https://books.google.ru/books?id=TXnAAAQBAJ&printsec=frontcover&hl=ru#v=onepage&q&f=false

[44] Truesdell C., Noll W., The Non-Linear Field Theories of Mechanics, ed. Antman S.S., Springer Science Business Media, New York, 2004 | DOI | MR

[45] Gurtin M.E., Fried E., Anand L., The mechanics and thermodynamics of continua, Cambridge University Press, Cambridge, 2010, 718 pp. | DOI | MR

[46] Noll W., “The Foundations of Classical Mechanics in the Light of Recent Advances in Continuum Mechanics”, The Foundations of Mechanics and Thermodynamics, Springer, Berlin–Heidelberg, 31–47 | DOI

[47] Lee J.M., Introduction to Topological Manifolds, Springer, New York, 2011 https://archive.org/details/springer_10.1007-978-0-387-22727-6 | Zbl

[48] Lee J.M., Introduction to Riemannian Manifolds, Springer, Cham, 2018 | DOI | MR | Zbl

[49] Yang W.H., Feng W.W., “On Axisymmetrical Deformations of Nonlinear Membranes”, Journal of Applied Mechanics, 37:4 (1970), 1002–1011 | DOI | Zbl

[50] Lurie A.I., Non-linear theory of elasticity, Nauka, M., 1980, 512 pp. (In Russ.)

[51] Germain P., Cours de mécanique des milieux continus, v. I, Théorie générale, Masson, Paris, 1973, 400 pp.

[52] Teodosiu C., Elastic Models of Crystal Defects, Springer, Berlin–Heidelberg, 1982, 336 pp. | DOI | MR

[53] Yavari A., “Compatibility Equations of Nonlinear Elasticity for Non-Simply-Connected Bodies”, Archive for Rational Mechanics and Analysis, 209 (2013), 237–253 | DOI | MR | Zbl

[54] Postnikov M.M., Lections on geometry. Semester V: Riemannian geometry, Faktorial, M., 1998, 496 pp. (In Russ.)

[55] Chern S.S., Chen W.H., Lam K.S., Lectures on Differential Geometry, World Scientific Publishing, Singapore, 1999, 356 pp. | DOI | MR | Zbl

[56] Dubrovin B.A., Novikov S.P., Fomenko A.T., Modern geometry: methods and applications, Nauka, M., 1986, 760 pp. (In Russ.) | MR

[57] Levi-Civita T., “Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura riemanniana”, Rendiconti del Circolo Matematico di Palermo, 42:1 (1916), 173–204 | DOI

[58] Kartan E., Spaces of affine, projective and conformal connection, Izd-vo Kazanskogo universiteta, Kazan, 1962, 210 pp. (In Russ.) | MR

[59] Fernandez O.E., Bloch A.M., “The Weitzenböck Connection and Time Reparameterization in Nonholonomic Mechanics”, Journal of Mathematical Physics, 52:1 (2011), 012901 | DOI | MR | Zbl

[60] Dhas B., Srinivasa A., Roy D., A Weyl geometric model for thermo-mechanics of solids with metrical defects, 2019, arXiv: 1904.06956

[61] Saa A., “Volume-forms and minimal action principles in affine manifolds”, Journal of Geometry and Physics, 15:2 (1995), 102–108 | DOI | MR | Zbl

[62] Miri M., Rivier N., “Continuum elasticity with topological defects, including dislocations and extra-matter”, Journal of Physics A: Mathematical and General, 35:7 (2002), 1727–1739 | DOI | MR | Zbl

[63] Roychowdhury A., Gupta A., “Non-metric Connection and Metric Anomalies in Materially Uniform Elastic Solids”, Journal of Elasticity, 126 (2017), 1–26 | DOI | MR | Zbl

[64] Le K.C., Stumpf H., “On the determination of the crystal reference in nonlinear continuum theory of dislocations”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 452:1945 (1996), 359–371 | DOI | MR | Zbl

[65] Le K.C., Stumpf H., “Nonlinear continuum theory of dislocations”, International Journal of Engineering Science, 34:3 (1996), 339–358 | DOI | MR | Zbl

[66] Le K.C., Stumpf H., “Strain measures, integrability condition and frame indifference in the theory of oriented media”, International Journal of Solids and Structures, 35:9–10 (1998), 783–798 | DOI | MR | Zbl

[67] Gantmacher F.R., The Theory of Matrices, Nauka, M., 1966, 576 pp. (In Russ.)

[68] Mac Lane S., Categories for the Working Mathematician, Fizmatlit, M., 2004, 154 pp.

[69] Mendelson E., Introduction to Mathematical Logic, Nauka, M., 1971, 322 pp. (In Russ.)

[70] Kröner E., “Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen”, Archive for Rational Mechanics and Analysis, 4:4 (1960), 18–334 | MR