Keywords: integral manifolds, integral manifold, optimal tracking, asymptotic expansion, differential equations, slow variables.
@article{VSGU_2022_28_3-4_a3,
author = {V. A. Sobolev},
title = {Reduction of the optimal tracking problem in the presence of noise},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {32--39},
year = {2022},
volume = {28},
number = {3-4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a3/}
}
TY - JOUR AU - V. A. Sobolev TI - Reduction of the optimal tracking problem in the presence of noise JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2022 SP - 32 EP - 39 VL - 28 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a3/ LA - ru ID - VSGU_2022_28_3-4_a3 ER -
V. A. Sobolev. Reduction of the optimal tracking problem in the presence of noise. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 3-4, pp. 32-39. http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a3/
[1] Sontag E., Mathematical Control Theory: Deterministic Finite-Dimensional Systems, 2nd edition, Springer-Verlag, Inc, New York, 1998 | DOI | MR | Zbl
[2] Vasil'eva A.B., Dmitriev M.G., “Singular perturbations in optimal control problems”, Journal of Soviet Mathematics, 34:4 (1986), 1579–1629 (In Russ.) | DOI | MR | Zbl | Zbl
[3] Dmitriev M.G., Kurina G.A., “Singular perturbations in control problems”, Automation and Remote Control, 67:1 (2006), 1–43 | DOI | MR | Zbl
[4] Naidu D.S., “Singular Perturbations and Time Scales in Control Theory and Applications: An Overview”, Dynamics of Continuous, Discrete and Impulsive Systems. Series B: Applications Algorithms, 9:2 (2002), 233–278 https://www.d.umn.edu/d̃snaidu/Naidu_Survey_DCDISJournal_2002.pdf | MR | Zbl
[5] Sobolev V.A., “Integral manifolds and decomposition of singularly perturbed systems”, System and Control Letters, 5:3 (1984), 169–179 | DOI | MR | Zbl