About systems of vectors and subspaces in finite dimensional space recovering vector-signal
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 3-4, pp. 26-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The subject of this paper are the systems of vectors and subspaces in finite dimensional spaces admitting the recovery of an unknown vector-signal by modules of measurements. We analyze the relationship between the properties of recovery by modules of measurements and recovery by norms of projections and the properties of alternative completeness in Euclidean and unitary spaces. The theorem on ranks of one linear operator is considered, the result of which in some cases can be regarded as another criterion for the possibility to restore a vector-signal. As a result of this work, the equivalence of the alternative completeness property and the statement of the rank theorem for Euclidean space is proved. It is shown that the rank theorem in the real case can be extended to the systems of subspaces. The questions about the minimum number of vectors admissible for reconstruction by modules of measurements are considered. The results available at the moment are presented, which are summarized in the form of a table for spaces of dimension less than 10. Also the known results to the question of the minimum number of subspaces admitting reconstruction by the norms of projections are briefly given.
Keywords: recovery by measurement modules, recovery by projection norms, spectral theorem, alternative completeness of vector system, mapping injectivity, Hilbert — Schmidt scalar product, phase lift method
Mots-clés : self-adjoint matrices.
@article{VSGU_2022_28_3-4_a2,
     author = {I. M. Izbiakov},
     title = {About systems of vectors and subspaces in finite dimensional space recovering vector-signal},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {26--31},
     year = {2022},
     volume = {28},
     number = {3-4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a2/}
}
TY  - JOUR
AU  - I. M. Izbiakov
TI  - About systems of vectors and subspaces in finite dimensional space recovering vector-signal
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2022
SP  - 26
EP  - 31
VL  - 28
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a2/
LA  - ru
ID  - VSGU_2022_28_3-4_a2
ER  - 
%0 Journal Article
%A I. M. Izbiakov
%T About systems of vectors and subspaces in finite dimensional space recovering vector-signal
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2022
%P 26-31
%V 28
%N 3-4
%U http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a2/
%G ru
%F VSGU_2022_28_3-4_a2
I. M. Izbiakov. About systems of vectors and subspaces in finite dimensional space recovering vector-signal. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 3-4, pp. 26-31. http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a2/

[1] Bahmanpour S., Cahill J., Casazza P.G., Jasper J., Woodland L.M., Phase retrieval and norm retrieval by vectors and projections, arXiv: 1409.8266 | MR

[2] Bandeira A.S., Cahil J., Mixon D.G., Nelson A.A., Saving phase: Injectivity and stability for phase retrieval, arXiv: 1302.4618v2

[3] Conca A., Edidin D., Hering M., Vinzant C., “An algebraic characterization of injectivity in phase retrieval”, Applied and Computational Harmonic Analysis, 2014 | DOI | MR

[4] Edidin D., Projections and Phase retrieval, arXiv: 1506.00674 | DOI | MR

[5] Vinzant C., “A small frame and a certificate of its injectivity”, 2015 International Conference on Sampling Theory and Applications (SampTA) | DOI

[6] Heinosaari T., Mazzarella L., Wolf M., “Quantum Tomography under Prior Information”, Communications in Mathematical Physics, 318 (2013), 355–374 | DOI | MR | Zbl

[7] Cahill J., Casazza P., Peterson J., WoodlandPhase L., Phase retrieval by projections, arXiv: 1305.6226

[8] Xu Z., The minimal measurement number for low rank matrix recovery | DOI

[9] Casazza P., Ghoreishi D., Phase retrieval by projections in $R^n$ requires $2n-2$ projections, arXiv: 2012.10738v2

[10] Horn R., Johnson Ch., Matrix analysis, Mir, M., 1989, 666 pp. (In Russ.) https://dl.booksee.org/genesis/192000/422f69a9fb7edf390425b4a9c4a99b32/_as/[Horn_R.,_Dzhonson_CH.]_Matrichnuei_analiz(BookSee.org).pdf | MR