On group characterization by numbers of conjugate classes
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 3-4, pp. 18-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $c(n,G)$ be a number of conjugate elements of order n in a group $G.$ In the article we study the problem of recognition of finite group by the set $\mathrm{ncl}(G)$ that consists of numbers $c(n,G).$ We prove that Abelian groups can be recognized by the set $\mathrm{ncl}(G)$ when the order of the group is known. We also describe some other types of groups that can be recognized. The examples of non-isomorphic groups with the same sets $\mathrm{ncl}(G)$ are given. Some theorems about a group recognition by partial conditions on $c(n,G)$ are proved.
Keywords: finite group, class of conjugate elements, order of element, genetic code, Sylow theorem, Abelian group, alternating group, dihedral groups.
@article{VSGU_2022_28_3-4_a1,
     author = {G. V. Voskresenskaya},
     title = {On group characterization by numbers of conjugate classes},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {18--25},
     year = {2022},
     volume = {28},
     number = {3-4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a1/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - On group characterization by numbers of conjugate classes
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2022
SP  - 18
EP  - 25
VL  - 28
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a1/
LA  - ru
ID  - VSGU_2022_28_3-4_a1
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T On group characterization by numbers of conjugate classes
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2022
%P 18-25
%V 28
%N 3-4
%U http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a1/
%G ru
%F VSGU_2022_28_3-4_a1
G. V. Voskresenskaya. On group characterization by numbers of conjugate classes. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 3-4, pp. 18-25. http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a1/

[1] Vinberg E.B., Course of algebra, Faktorial Press, M., 2002, 544 pp. (In Russ.)

[2] Golovina L.I., Linear algebra and some its applications, Nauka, M., 1975, 408 pp. (In Russ.)

[3] Voskresenskaya G.V., “Group recognition by conditions on classes of conjugate elements”, Eighth school-conference “Lie algebras, algebraic groups and the theory of invariants”, Abstracts, MTsNMO, M., 2020, 19 (In Russ.)

[4] Gorshkov I.B., “Recognizability of Symmetric Groups by Spectrum”, Algebra and Logic, 53:6 (2014), 450–457 (in English; original in Russian) | DOI | MR

[5] Gorshkov I.B., Maslova N.V., “Finite almost simple groups whose Gruenberg-Kegel graphs coicide with Gruenberg-Kegel graphs of solvable groups”, Algebra and Logic, 57:2 (2018), 115–129 (In English; original in Russian) | DOI | DOI | MR | Zbl

[6] Kargapolov M.I., Merzlyakov Yu.I., Basics of group theory, Lan', Saint Petersburg, 2022, 288 pp. | MR

[7] Coxeter H.S.M., Moser W.O.J., Generators and relations for discrete groups, Nauka, M., 1980, 240 pp. (In Russ.) | MR

[8] Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford Press, Oxford, 1985, 252 pp. | MR | Zbl

[9] Mazurov V.D., “Recognition of finite groups by a set of orders of their elements”, Algebra and Logic, 37:6 (1998), 371–379 (in English; original in Russian) | DOI | MR | Zbl

[10] Panshin V.V., “On group recognition by the set of dimensions of conjugate classes”, Second conference of Russian Mathematical Centers, abstracts (November 7-11 2022), Izd-vo MGU, M., 2022, 172–173

[11] Hall M., Group theory, Izd–vo inostr. lit., M., 1962, 468 pp. (In Russ.)