@article{VSGU_2022_28_3-4_a1,
author = {G. V. Voskresenskaya},
title = {On group characterization by numbers of conjugate classes},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {18--25},
year = {2022},
volume = {28},
number = {3-4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a1/}
}
TY - JOUR AU - G. V. Voskresenskaya TI - On group characterization by numbers of conjugate classes JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2022 SP - 18 EP - 25 VL - 28 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a1/ LA - ru ID - VSGU_2022_28_3-4_a1 ER -
G. V. Voskresenskaya. On group characterization by numbers of conjugate classes. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 3-4, pp. 18-25. http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a1/
[1] Vinberg E.B., Course of algebra, Faktorial Press, M., 2002, 544 pp. (In Russ.)
[2] Golovina L.I., Linear algebra and some its applications, Nauka, M., 1975, 408 pp. (In Russ.)
[3] Voskresenskaya G.V., “Group recognition by conditions on classes of conjugate elements”, Eighth school-conference “Lie algebras, algebraic groups and the theory of invariants”, Abstracts, MTsNMO, M., 2020, 19 (In Russ.)
[4] Gorshkov I.B., “Recognizability of Symmetric Groups by Spectrum”, Algebra and Logic, 53:6 (2014), 450–457 (in English; original in Russian) | DOI | MR
[5] Gorshkov I.B., Maslova N.V., “Finite almost simple groups whose Gruenberg-Kegel graphs coicide with Gruenberg-Kegel graphs of solvable groups”, Algebra and Logic, 57:2 (2018), 115–129 (In English; original in Russian) | DOI | DOI | MR | Zbl
[6] Kargapolov M.I., Merzlyakov Yu.I., Basics of group theory, Lan', Saint Petersburg, 2022, 288 pp. | MR
[7] Coxeter H.S.M., Moser W.O.J., Generators and relations for discrete groups, Nauka, M., 1980, 240 pp. (In Russ.) | MR
[8] Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford Press, Oxford, 1985, 252 pp. | MR | Zbl
[9] Mazurov V.D., “Recognition of finite groups by a set of orders of their elements”, Algebra and Logic, 37:6 (1998), 371–379 (in English; original in Russian) | DOI | MR | Zbl
[10] Panshin V.V., “On group recognition by the set of dimensions of conjugate classes”, Second conference of Russian Mathematical Centers, abstracts (November 7-11 2022), Izd-vo MGU, M., 2022, 172–173
[11] Hall M., Group theory, Izd–vo inostr. lit., M., 1962, 468 pp. (In Russ.)