@article{VSGU_2022_28_3-4_a0,
author = {A. V. Bogatov and L. S. Pulkina},
title = {On solvability of the inverse problem for the one-dimensional parabolic equation with unknown time-dependent coefficient under integral observation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {7--17},
year = {2022},
volume = {28},
number = {3-4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a0/}
}
TY - JOUR AU - A. V. Bogatov AU - L. S. Pulkina TI - On solvability of the inverse problem for the one-dimensional parabolic equation with unknown time-dependent coefficient under integral observation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2022 SP - 7 EP - 17 VL - 28 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a0/ LA - ru ID - VSGU_2022_28_3-4_a0 ER -
%0 Journal Article %A A. V. Bogatov %A L. S. Pulkina %T On solvability of the inverse problem for the one-dimensional parabolic equation with unknown time-dependent coefficient under integral observation %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2022 %P 7-17 %V 28 %N 3-4 %U http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a0/ %G ru %F VSGU_2022_28_3-4_a0
A. V. Bogatov; L. S. Pulkina. On solvability of the inverse problem for the one-dimensional parabolic equation with unknown time-dependent coefficient under integral observation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 3-4, pp. 7-17. http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a0/
[1] Prilepko A.I., Orlovskii D.G., “Determination of the parameter of an evolution equation and inverse problems of mathematical physics. II”, Differentsial'nye Uravneniya, 21:4 (1985), 694–701 (In Russ.) | MR | Zbl
[2] Cannon J.R., Lin Y., “Determination of a parameter $p(t)$ in some quasi-linear parabolic differential equations”, Inverse Problems, 4:1 (1988), 35–45 | DOI | MR | Zbl
[3] Cannon J.R., Lin Y., “Determination of a control parameter in a parabolic partial differential equation”, J. Austral. Math. Soc. Ser., 33 (1991), 149–163 | DOI | MR | Zbl
[4] Ivanchov N.I., “Inverse problems for the heat-conduction equation with nonlocal boundary conditions”, Ukrainian Mathematical Journal, 45:8 (1993), 1066–1071 (In Russ.) | MR | Zbl
[5] Steklofff W., “The problem of cooling a heterogeneous solid”, Communications de la Societe mathematique de Kharkow. 2-ee serie, 5 (1897), 136–181 (In Russ.) | MR
[6] Denisov A.M., Introduction to inverse problem theory, Izdatel'stvo Moskovskogo universiteta, M., 1994, 208 pp. (In Russ.)
[7] Kamynin V.L., “The Inverse Problem of Simultaneous Determination of the Two Lower Space-Dependent Coefficients in a Parabolic Equation”, Mathematical Notes, 106:2 (2019), 235–247 (In English; original in Russian) | DOI | DOI | MR | MR | Zbl
[8] Kamynin V.L., “The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation”, Mathematical Notes, 94:2 (2013), 205–213 (In English; original in Russian) | DOI | DOI | MR | Zbl
[9] Kamynin V.L., “The Inverse Problem of Simultaneous Determination of the Two Time-Dependent Lower Coefficients in a Non-Divergent Parabolic Equation in the Plane”, Mathematical Notes, 107:1 (2020), 93–104 (In English; original in Russian) | DOI | DOI | MR | Zbl
[10] Kozhanov A.I., “Solvability of the Inverse Problem of Finding Thermal Conductivity”, Siberian Mathematical Journal, 46:5 (2005), 841–856 (In English; original in Russian) | DOI | MR | Zbl
[11] Kozhanov A.I., “Inverse problems of recovering the right-hand side of a special kind of parabolic equations”, Mathematical notes of NEFU, 23:4 (2016), 31–45 (In Russ.) | Zbl
[12] Beylin A.B., Bogatov A.V., Pulkina L.S., “A problem with nonlocal conditions for a one-dimensional parabolic equation”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 26:2 (2022), 380–395 (In Russ.) | DOI
[13] Gording L., Cauchy's problem for hyperbolic equations, Izdatel'stvo inostrannoi literatury, M., 1961 (In Russ.)