On solvability of the inverse problem for the one-dimensional parabolic equation with unknown time-dependent coefficient under integral observation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 3-4, pp. 7-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we study the inverse problem of determination of time-dependent coefficient in the parabolic equation. We prove existence and uniqueness theorem for the solution of the inverse problem with nonlocal boundary conditions and integral observation. The proof is based on a priori estimates obtained in this article and the results on solvability of corresponding direct problem for the equarion under consideration.
Keywords: inverse problem, time-dependent unknown coefficient, integral observation, nonlocal boundary conditions.
@article{VSGU_2022_28_3-4_a0,
     author = {A. V. Bogatov and L. S. Pulkina},
     title = {On solvability of the inverse problem for the one-dimensional parabolic equation with unknown time-dependent coefficient under integral observation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--17},
     year = {2022},
     volume = {28},
     number = {3-4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a0/}
}
TY  - JOUR
AU  - A. V. Bogatov
AU  - L. S. Pulkina
TI  - On solvability of the inverse problem for the one-dimensional parabolic equation with unknown time-dependent coefficient under integral observation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2022
SP  - 7
EP  - 17
VL  - 28
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a0/
LA  - ru
ID  - VSGU_2022_28_3-4_a0
ER  - 
%0 Journal Article
%A A. V. Bogatov
%A L. S. Pulkina
%T On solvability of the inverse problem for the one-dimensional parabolic equation with unknown time-dependent coefficient under integral observation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2022
%P 7-17
%V 28
%N 3-4
%U http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a0/
%G ru
%F VSGU_2022_28_3-4_a0
A. V. Bogatov; L. S. Pulkina. On solvability of the inverse problem for the one-dimensional parabolic equation with unknown time-dependent coefficient under integral observation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 3-4, pp. 7-17. http://geodesic.mathdoc.fr/item/VSGU_2022_28_3-4_a0/

[1] Prilepko A.I., Orlovskii D.G., “Determination of the parameter of an evolution equation and inverse problems of mathematical physics. II”, Differentsial'nye Uravneniya, 21:4 (1985), 694–701 (In Russ.) | MR | Zbl

[2] Cannon J.R., Lin Y., “Determination of a parameter $p(t)$ in some quasi-linear parabolic differential equations”, Inverse Problems, 4:1 (1988), 35–45 | DOI | MR | Zbl

[3] Cannon J.R., Lin Y., “Determination of a control parameter in a parabolic partial differential equation”, J. Austral. Math. Soc. Ser., 33 (1991), 149–163 | DOI | MR | Zbl

[4] Ivanchov N.I., “Inverse problems for the heat-conduction equation with nonlocal boundary conditions”, Ukrainian Mathematical Journal, 45:8 (1993), 1066–1071 (In Russ.) | MR | Zbl

[5] Steklofff W., “The problem of cooling a heterogeneous solid”, Communications de la Societe mathematique de Kharkow. 2-ee serie, 5 (1897), 136–181 (In Russ.) | MR

[6] Denisov A.M., Introduction to inverse problem theory, Izdatel'stvo Moskovskogo universiteta, M., 1994, 208 pp. (In Russ.)

[7] Kamynin V.L., “The Inverse Problem of Simultaneous Determination of the Two Lower Space-Dependent Coefficients in a Parabolic Equation”, Mathematical Notes, 106:2 (2019), 235–247 (In English; original in Russian) | DOI | DOI | MR | MR | Zbl

[8] Kamynin V.L., “The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation”, Mathematical Notes, 94:2 (2013), 205–213 (In English; original in Russian) | DOI | DOI | MR | Zbl

[9] Kamynin V.L., “The Inverse Problem of Simultaneous Determination of the Two Time-Dependent Lower Coefficients in a Non-Divergent Parabolic Equation in the Plane”, Mathematical Notes, 107:1 (2020), 93–104 (In English; original in Russian) | DOI | DOI | MR | Zbl

[10] Kozhanov A.I., “Solvability of the Inverse Problem of Finding Thermal Conductivity”, Siberian Mathematical Journal, 46:5 (2005), 841–856 (In English; original in Russian) | DOI | MR | Zbl

[11] Kozhanov A.I., “Inverse problems of recovering the right-hand side of a special kind of parabolic equations”, Mathematical notes of NEFU, 23:4 (2016), 31–45 (In Russ.) | Zbl

[12] Beylin A.B., Bogatov A.V., Pulkina L.S., “A problem with nonlocal conditions for a one-dimensional parabolic equation”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 26:2 (2022), 380–395 (In Russ.) | DOI

[13] Gording L., Cauchy's problem for hyperbolic equations, Izdatel'stvo inostrannoi literatury, M., 1961 (In Russ.)