Mots-clés : one-photon transitions, exact solution of the quantum Liouville equation, entanglement
@article{VSGU_2022_28_1-2_a6,
author = {A. R. Bagrov and E. K. Bashkirov},
title = {Dynamics of the three-qubits {Tavis~{\textemdash}} {Cummings} model},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {95--105},
year = {2022},
volume = {28},
number = {1-2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a6/}
}
TY - JOUR AU - A. R. Bagrov AU - E. K. Bashkirov TI - Dynamics of the three-qubits Tavis — Cummings model JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2022 SP - 95 EP - 105 VL - 28 IS - 1-2 UR - http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a6/ LA - ru ID - VSGU_2022_28_1-2_a6 ER -
A. R. Bagrov; E. K. Bashkirov. Dynamics of the three-qubits Tavis — Cummings model. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 95-105. http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a6/
[1] Buluta I., Ashhab S., Nori F., “Natural and artificial atoms for quantum computation.”, Reports on Progress in Physics, 74:10 (2011), 104401 | DOI
[2] Xiang Z.L., Ashhab S., You J.Y., Nori F., “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems”, Reviews of Modern Physics, 85:2 (2013), 623–653 | DOI
[3] Gu X., Kockum A.F., Miranowicz A., Liu Y.X., Nori F., “Microwave photonics with superconducting quantum circuits”, Physics Reports, 718–719 (2017), 1–102 | DOI | MR | Zbl
[4] Arute F. et al., “Quantum supremacy using a programmable superconducting processor”, Nature, 574 (2019), 505–510 | DOI
[5] Ball P., “First quantum computer to pack 100-qubits enters crowded race.”, Nature, 599 (2021), 542 pp. | DOI
[6] Georgescu I.M., Ashhab S., Nori P., “Quantum simulation”, Reviews of Modern Physics, 88:1 (2014), 153–185 | DOI
[7] Wendin G., “Quantum information processing with super-conducting circuits: a review”, Reports on Progress in Physics, 80:10 (2017), 1–60 | DOI | MR
[8] Peres A., “Separability Criterion for Density Matrices”, Physical Review Letters, 77:8 (1996), 1413–1415 | DOI | MR | Zbl
[9] Horodecki R., Horodecki M., Horodecki P., “Separability of Mixed States: Necessary and Sufficient Condition”, Physics Letters A, 223:1–2 (1996), 333–339 | DOI | MR
[10] Wooters W.K., “Entanglement of Formation of an Arbitrary State of Two Qubits”, Physical Review Letters, 80:10 (1998), 2245–2248 | DOI
[11] Kazuyuki F., Kyoko H., Ryosuke K., Tatsuo S., Yukako W., “Explicit Form of the Evolution Operator of TAVIS-CUMMINGS Model: Three and Four Atoms Cases”, International Journal of Geometric Methods in Modern Physics, 1:6 (2012), 721–730 | DOI
[12] Liu H.P., Cai J.F., “Entanglement in Three-Atom Tavis Cummings Model Induced by a Thermal Field”, Communications in Theoretical Physics, 43:3 (2005), 427–431 | DOI
[13] Cirac J.I., Vidal G., Dur W., “Three qubits can be entangled in two inequivalent ways”, Physical Review A, 62:6 (2000), 062314 | DOI | MR
[14] Garcia-Alcaine G., Sabin C., “A classification of entanglement in three-qubit systems”, The European Physical Journal D, 48:3 (2008), 435–442 | DOI | MR
[15] Youssef M., Metwally N., Obada A.-S.F., “Some entanglement features of a three-atom Tavis-Cummings model: a cooperative case”, Journal of Physics B: Atomic, Molecular and Optical Physics, 43 (2010), 095501, arXiv: 0908.4337 | DOI
[16] Han K.H., Kye S.H., “The role of phases in detecting three-qubit entanglement”, Journal of Mathematical Physics, 58:10 (2017), 102201 | DOI | MR | Zbl
[17] Siti Munirah Mohd S.M., Idrus B., Zainuddin H., Mukhtar M., “Entanglement Classification for a Three-qubit System using Special Unitary Groups”, International Journal of Advanced Computer Science and Applications, 10:7 (2019), 374–379 | DOI
[18] Tavis M., Cummings F.W., “Exact solution for an n-molecule-radiation-field hamiltonian”, Physical Review, 170:2 (1968), 379–384 | DOI
[19] Kim M.S., Lee J., Ahn D., Knight P.L., “Entanglement induced by a single-mode heat environment”, Physical Review A, 65:4 (2002), 040101 | DOI
[20] Zhou L., Song H.S., “Entanglement induced by a single-mode thermal field and criteria for entanglement”, Journal of Optics B: Quantum and Semiclassical Optics, 4:6 (2002), 425–429 | DOI
[21] Bashkirov E.K., “Entanglement induced by the two-mode thermal noise”, Laser Physics Letters, 3 (2006), 145–150 https://www.researchgate.net/publication/2196323_Entanglement_induced_by_a_two-mode_thermal_field | DOI
[22] Aguiar L.S., Munhoz P.P., Vidiella-Barranco A., Roversi J.A., “The entanglement of two dipole-dipole coupled in a cavity interacting with a thermal field”, Journal of Optics B: Quantum and Semiclassical Optics, 7:12 (2005), 769–771 | DOI
[23] Liao X.-P., Fang M.-F., Cai J.-W., Zheng X.-J., “The entanglement of two dipole-dipole coupled atoms interacting with a thermal field via two-photon process”, Chinese Physics B, 17:6 (2008), 2137–2142 | DOI
[24] Bashkirov E.K., Stupatskaya M.P., “The entanglement of two dipole-dipole coupled atoms induced by nondegenerate two-mode thermal noise”, Laser Physics, 19 (2009), 525–530 | DOI
[25] Zhang B., “Entanglement between two qubits interacting with a slightly detuned thermal field”, Optics Communications, 283:23 (2010), 4676–4679 | DOI
[26] Bashkirov E.K., “Thermal Entanglement Between a Jaynes-Cummings Atom and an Isolated Atom”, International Jornal of Theoretical Physics, 57 (2018), 3761–3771 | DOI | Zbl
[27] Bashkirov E.K., “Dynamics of entanglement of atoms with two-photon transitions induced by a thermal field”, Computer Optics, 44:2 (2020), 167–176 (In Russ.) | DOI