Dynamics of the three-qubits Tavis — Cummings model
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 95-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we have studied the entanglement dynamics of three identical qubits (natural or artificial two-level atoms) resonantly interacting with the one mode of the thermal field of a microwave lossless resonator via one-photon transitions. An exact solution of the quantum time Schrodinger equation is found for the total wave function of the system for the initial separable and entangled states of qubits and the Fock initial state of the resonator. On the basis of this solution, an exact solution of the quantum Liouville equation for the total time-dependent density matrix of the system in the case of a thermal field of the resonator is constructed. The exact solution for the full density matrix is used to calculate the criterion of entanglement of pairs of qubits – negativity. The results of numerical simulation of the time dependence of the negativity of pairs of qubits showed that with an increase in the intensity of the thermal resonator field, the degree of entanglement of pairs of qubits decreases. It is also shown that In the model under consideration, for any initial states of qubits and intensities of the thermal field of the resonator, the effect of sudden death of entanglement takes place. This behavior of the entanglement parameter in the model under consideration differs from that in the two-qubit model. For two-qubit model, the effect of the sudden death of entanglement takes place only for the initial entangled states of qubits and intense thermal fields of the resonator.
Keywords: qubits, resonant interactiona, cavity, negativity, sudden death of entanglement.
Mots-clés : one-photon transitions, exact solution of the quantum Liouville equation, entanglement
@article{VSGU_2022_28_1-2_a6,
     author = {A. R. Bagrov and E. K. Bashkirov},
     title = {Dynamics of the three-qubits {Tavis~{\textemdash}} {Cummings} model},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {95--105},
     year = {2022},
     volume = {28},
     number = {1-2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a6/}
}
TY  - JOUR
AU  - A. R. Bagrov
AU  - E. K. Bashkirov
TI  - Dynamics of the three-qubits Tavis — Cummings model
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2022
SP  - 95
EP  - 105
VL  - 28
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a6/
LA  - ru
ID  - VSGU_2022_28_1-2_a6
ER  - 
%0 Journal Article
%A A. R. Bagrov
%A E. K. Bashkirov
%T Dynamics of the three-qubits Tavis — Cummings model
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2022
%P 95-105
%V 28
%N 1-2
%U http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a6/
%G ru
%F VSGU_2022_28_1-2_a6
A. R. Bagrov; E. K. Bashkirov. Dynamics of the three-qubits Tavis — Cummings model. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 95-105. http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a6/

[1] Buluta I., Ashhab S., Nori F., “Natural and artificial atoms for quantum computation.”, Reports on Progress in Physics, 74:10 (2011), 104401 | DOI

[2] Xiang Z.L., Ashhab S., You J.Y., Nori F., “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems”, Reviews of Modern Physics, 85:2 (2013), 623–653 | DOI

[3] Gu X., Kockum A.F., Miranowicz A., Liu Y.X., Nori F., “Microwave photonics with superconducting quantum circuits”, Physics Reports, 718–719 (2017), 1–102 | DOI | MR | Zbl

[4] Arute F. et al., “Quantum supremacy using a programmable superconducting processor”, Nature, 574 (2019), 505–510 | DOI

[5] Ball P., “First quantum computer to pack 100-qubits enters crowded race.”, Nature, 599 (2021), 542 pp. | DOI

[6] Georgescu I.M., Ashhab S., Nori P., “Quantum simulation”, Reviews of Modern Physics, 88:1 (2014), 153–185 | DOI

[7] Wendin G., “Quantum information processing with super-conducting circuits: a review”, Reports on Progress in Physics, 80:10 (2017), 1–60 | DOI | MR

[8] Peres A., “Separability Criterion for Density Matrices”, Physical Review Letters, 77:8 (1996), 1413–1415 | DOI | MR | Zbl

[9] Horodecki R., Horodecki M., Horodecki P., “Separability of Mixed States: Necessary and Sufficient Condition”, Physics Letters A, 223:1–2 (1996), 333–339 | DOI | MR

[10] Wooters W.K., “Entanglement of Formation of an Arbitrary State of Two Qubits”, Physical Review Letters, 80:10 (1998), 2245–2248 | DOI

[11] Kazuyuki F., Kyoko H., Ryosuke K., Tatsuo S., Yukako W., “Explicit Form of the Evolution Operator of TAVIS-CUMMINGS Model: Three and Four Atoms Cases”, International Journal of Geometric Methods in Modern Physics, 1:6 (2012), 721–730 | DOI

[12] Liu H.P., Cai J.F., “Entanglement in Three-Atom Tavis Cummings Model Induced by a Thermal Field”, Communications in Theoretical Physics, 43:3 (2005), 427–431 | DOI

[13] Cirac J.I., Vidal G., Dur W., “Three qubits can be entangled in two inequivalent ways”, Physical Review A, 62:6 (2000), 062314 | DOI | MR

[14] Garcia-Alcaine G., Sabin C., “A classification of entanglement in three-qubit systems”, The European Physical Journal D, 48:3 (2008), 435–442 | DOI | MR

[15] Youssef M., Metwally N., Obada A.-S.F., “Some entanglement features of a three-atom Tavis-Cummings model: a cooperative case”, Journal of Physics B: Atomic, Molecular and Optical Physics, 43 (2010), 095501, arXiv: 0908.4337 | DOI

[16] Han K.H., Kye S.H., “The role of phases in detecting three-qubit entanglement”, Journal of Mathematical Physics, 58:10 (2017), 102201 | DOI | MR | Zbl

[17] Siti Munirah Mohd S.M., Idrus B., Zainuddin H., Mukhtar M., “Entanglement Classification for a Three-qubit System using Special Unitary Groups”, International Journal of Advanced Computer Science and Applications, 10:7 (2019), 374–379 | DOI

[18] Tavis M., Cummings F.W., “Exact solution for an n-molecule-radiation-field hamiltonian”, Physical Review, 170:2 (1968), 379–384 | DOI

[19] Kim M.S., Lee J., Ahn D., Knight P.L., “Entanglement induced by a single-mode heat environment”, Physical Review A, 65:4 (2002), 040101 | DOI

[20] Zhou L., Song H.S., “Entanglement induced by a single-mode thermal field and criteria for entanglement”, Journal of Optics B: Quantum and Semiclassical Optics, 4:6 (2002), 425–429 | DOI

[21] Bashkirov E.K., “Entanglement induced by the two-mode thermal noise”, Laser Physics Letters, 3 (2006), 145–150 https://www.researchgate.net/publication/2196323_Entanglement_induced_by_a_two-mode_thermal_field | DOI

[22] Aguiar L.S., Munhoz P.P., Vidiella-Barranco A., Roversi J.A., “The entanglement of two dipole-dipole coupled in a cavity interacting with a thermal field”, Journal of Optics B: Quantum and Semiclassical Optics, 7:12 (2005), 769–771 | DOI

[23] Liao X.-P., Fang M.-F., Cai J.-W., Zheng X.-J., “The entanglement of two dipole-dipole coupled atoms interacting with a thermal field via two-photon process”, Chinese Physics B, 17:6 (2008), 2137–2142 | DOI

[24] Bashkirov E.K., Stupatskaya M.P., “The entanglement of two dipole-dipole coupled atoms induced by nondegenerate two-mode thermal noise”, Laser Physics, 19 (2009), 525–530 | DOI

[25] Zhang B., “Entanglement between two qubits interacting with a slightly detuned thermal field”, Optics Communications, 283:23 (2010), 4676–4679 | DOI

[26] Bashkirov E.K., “Thermal Entanglement Between a Jaynes-Cummings Atom and an Isolated Atom”, International Jornal of Theoretical Physics, 57 (2018), 3761–3771 | DOI | Zbl

[27] Bashkirov E.K., “Dynamics of entanglement of atoms with two-photon transitions induced by a thermal field”, Computer Optics, 44:2 (2020), 167–176 (In Russ.) | DOI