Quantum models in biology
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 74-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The penetration of quantum concepts into biological science, which began shortly after the creation of quantum mechanics, over the past two decades has taken shape in a new interdisciplinary scientific discipline — quantum biology. One of the key questions of quantum biology has been formulated as follows: are there biological systems that use quantum effects to perform a task that cannot be done classically? More broadly, do some kinds of organisms adapt efficient quantum mechanisms in the process of their evolutionary development in order to gain an advantage over their competitors? The range of topical problems of the new discipline discussed in this brief review includes questions of a general, historical and methodological character, and generalizes some theoretical models aimed at describing quantum processes, including bacterial photosynthesis, bird magnetoreception, and the mechanism of olfactory sense in living organisms.
Keywords: quantum transport, coherence, interference, photosynthesis, magnetoreception, biosensors.
@article{VSGU_2022_28_1-2_a5,
     author = {A. V. Syurakshin and V. A. Saleev and V. Yu. Yushankhai},
     title = {Quantum models in biology},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {74--94},
     year = {2022},
     volume = {28},
     number = {1-2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a5/}
}
TY  - JOUR
AU  - A. V. Syurakshin
AU  - V. A. Saleev
AU  - V. Yu. Yushankhai
TI  - Quantum models in biology
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2022
SP  - 74
EP  - 94
VL  - 28
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a5/
LA  - ru
ID  - VSGU_2022_28_1-2_a5
ER  - 
%0 Journal Article
%A A. V. Syurakshin
%A V. A. Saleev
%A V. Yu. Yushankhai
%T Quantum models in biology
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2022
%P 74-94
%V 28
%N 1-2
%U http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a5/
%G ru
%F VSGU_2022_28_1-2_a5
A. V. Syurakshin; V. A. Saleev; V. Yu. Yushankhai. Quantum models in biology. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 74-94. http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a5/

[1] Bohr N., “Light and Life”, Nature, 131 (1933), 421–423 | DOI

[2] Schrodinger E., What is Life? The Physical Aspect of the Living Cell, AST, M., 2018, 288 pp. (In Russ.)

[3] Pauling L., The nature of chemical bond, GNTI khimicheskoi literatury, M.-L., 1947, 438 pp. (In Russ.)

[4] N. Lambert et al., “Quantum biology”, Nature Physics, 9:1 (2013), 10–18 | DOI

[5] Davydov A.S., Biology and quantum mechanics, Nauk. Dumka, Kyiv, 1979, 296 pp. (In Russ.)

[6] Arndt M., Juffmann T., Vedral V., “Quantum physics meets biology”, HFSP Journal, 3:6 (2009), 386–400 | DOI

[7] Mohseni M., Omar Y., Engel G., Plenio M.B. (eds.), Quantum Effects in Biology, Cambridge University Press, Cambridge, 2014 | DOI

[8] Ivanov M.G., How to understand quantum mechanics, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2012, 516 pp. (In Russ.)

[9] Cheng Y.-C., Fleming G.R., “Dynamics of light harvesting in photosynthesis”, Annual Review of Physical Chemistry, 60 (2009), 241–262 | DOI

[10] Hore P.J., Mouritsen H., “The Radical-Pair Mechanism of Magnetoreception”, Annual Review of Biophysics, 45 (2016), 299–344 | DOI | MR

[11] Brookes J.C., “Olfaction: The physics of how smell works”, Contemporary Physics, 52:5 (2011), 385–402 | DOI | MR

[12] Beratan D.N., Why Are DNA and Protein Electron Transfer So Different?, Annual Review of Physical Chemistry, 70 (2019), 71–97 | DOI

[13] Gaysinovich A.E., The origin and development of genetics, Nauka, M., 1988, 423 pp. (In Russ.)

[14] Kanke V.A., Philosophy of mathematics, physics, chemistry, biology, KNORUS, M., 2011, 368 pp.

[15] Lipkin A.E. (Ed.), Philosophy of science, EKSMO, M., 2007, 608 pp. (In Russ.)

[16] Wilson J., Biological Individuality: The Identity and Persistence of Living Entities, Cambridge University Press, Cambridge, 1999, 152 pp. | DOI

[17] Weber M., The Philosophy of Experimental Biology, Cambridge University Press, Cambridge, 2005, 374 pp. | DOI

[18] Prigogine I., Stengers I., Order out of chaos. Man's new dialogue with nature, Progress, M., 1986, 432 pp. (In Russ.)

[19] Wiener N., Cybernetics, or Control and communication in the animal and the machine, Translation from English by Solovyov I.V., Povarov G.N., ed. Povarov G.N., Sovetskoe radio, M., 1968, 328 pp.

[20] Knyazeva H.N., “Biosemiotics: The Origins of an Interdisciplinary Movement”, Voprosy Filosofii, 11 (2018), 86–98 (In Russ.) | DOI

[21] A. Marais et al., “The future of quantum biology”, Journal of the Royal Society Interface, 15 (2018), 20180640 | DOI

[22] McFadden J., Al-Khalili J., “The origins of quantum biology”, Proceedings of the Royal Society A. Mathematical, Physical and Engineering Sciences, 474:2220 (2018), 20180674 | DOI | MR | Zbl

[23] Huelga S.F., Plenio M.B., “Vibrations, quanta and biology”, Contemporary Physics, 54:4 (2013), 181–207 | DOI

[24] Cao et al., “Quantum biology revisited”, Science Advances, 6:14 (2020), eaaz4888 | DOI

[25] Stoneham A.M., Turin L., Brookes J.C., Horsfield A.P., “Quantum vibrational effects on sense of smell”, Quantum Effects in Biology, eds. M. Mohseni, Y. Omar, G.S. Engel, M.B. Plenio, Cambridge University Press, Cambridge, 2014, 264–276 | DOI

[26] Turin L., “A spectroscopic mechanism for primary olfactory reception”, The Chemical Senses, 21:6 (1996), 773–791 | DOI

[27] Mohseni M., Rebentrost P., Lloyd S., Aspuru-Guzik A., “Environment-Assisted Quantum Walks in Photosynthetic Energy Transfer”, The Journal of Chemical Physics, 129:17 (2008), 174106 | DOI

[28] C. Maier et al., “Environment-Assisted Quantum Transport in a 10-qubit Network”, Physical Review Letters, 122 (2019), 050501 | DOI

[29] G.S. Engel et al., “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems”, Nature, 446 (2007), 782–786 | DOI

[30] G. Panitchayangkoon et al., “Long-lived quantum coherence in photosynthetic complexes at physiological temperature”, Proceedings of the National Academy of Sciences of the United States of America, 107:29 (2010), 12766–12770 | DOI

[31] Anderson P.W., “Absence of Diffusion in Certain Random Lattices”, Physical Review, 109:5 (1958), 1492 | DOI

[32] Schulten K., Swenberg C.E., Weller A., “A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion”, Zeitschrift fur Physikalische Chemie, 111:1 (1978), 1–5 | DOI

[33] Ritz T., Adem S., Schulten K., “A Model for Photoreceptor-Based Magnetoreception in Birds”, Biophysical Journal, 78:2 (2000), 707–718 | DOI

[34] Zhang Y., Berman G.P., Kais S., “The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement”, International Journal of Quantum Chemistry, 115:19 (2015), 1327–1341 | DOI

[35] Astakhova T.Yu., Likhachev V.N., Vinogradov G.A., “Long-range charge transfer in biopolymers”, Russian Chemical Reviews, 81:11 (2012), 994–1010 (In English; Russian original) | DOI

[36] Syurakshin A.V., Lakhno V.D., Yushankhai V.Yu., “Perenos zaryada v molekule DNK v ramkakh prostoi modeli otkrytoi kvantovoi sistemy”, Preprinty IPM im. M.V. Keldysha, 2021, 23, 26 pp. (In Russ.) | DOI