@article{VSGU_2022_28_1-2_a4,
author = {T. N. Lycheva and S. A. Lychev},
title = {Evolution of the field of distributed defects in a crystal during contact interaction with a system of rigid stamps},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {55--73},
year = {2022},
volume = {28},
number = {1-2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a4/}
}
TY - JOUR AU - T. N. Lycheva AU - S. A. Lychev TI - Evolution of the field of distributed defects in a crystal during contact interaction with a system of rigid stamps JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2022 SP - 55 EP - 73 VL - 28 IS - 1-2 UR - http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a4/ LA - ru ID - VSGU_2022_28_1-2_a4 ER -
%0 Journal Article %A T. N. Lycheva %A S. A. Lychev %T Evolution of the field of distributed defects in a crystal during contact interaction with a system of rigid stamps %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2022 %P 55-73 %V 28 %N 1-2 %U http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a4/ %G ru %F VSGU_2022_28_1-2_a4
T. N. Lycheva; S. A. Lychev. Evolution of the field of distributed defects in a crystal during contact interaction with a system of rigid stamps. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 55-73. http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a4/
[1] Bei Yu, Pan D.Z., Design for Manufacturability with Advanced Lithography, Springer, 2016, 175 pp. | DOI
[2] Xi Chen Ed., Mechanical Self-Assembly, Springer, 2013 | DOI
[3] Lobontiu N., Garcia E., Mechanics of Microelectromechanical Systems, Springer-Verlag US, 2005
[4] Weingarten J., “Sulle superficie di discontinuita nella teoria della elasticita dei corpi solidi”, Rend. Reale Accad. dei Lincei, classe di sci., fis., mat. e nat., 10:1 (1901), 57–60 | MR
[5] Volterra V., “Sur l'équilibre des corps élastiques multiplement connexes”, Annales scientifiques de l'École Normale Supérieure, Série 3, 24 (1907), 401–517 | DOI | MR
[6] Cauchy A.-L., “De la pression ou tension dans un corps solide”, Ex. de Math., 1827, 42–56 | DOI
[7] Cauchy A.-L., “Sur la condensation et la dilatation des corps solides”, Ex. de Math., 1827, 60–69 | DOI
[8] Frenkel J., “Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper”, Zeitschrift für Physik, 37:7–8 (1926), 572–609 | DOI
[9] Polanyi M., “Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte”, Zeitschrift für Physik, 89:9–10 (1934), 660–664 | DOI
[10] Orowan E., “Zur Kristallplastizität. I”, Zeitschrift für Physik, 89:9–10 (1934), 605–613 | DOI
[11] Taylor G.I., “The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 145:855 (1934), 362–387 | DOI | MR
[12] Taylor G.I., “The Mechanism of Plastic Deformation of Crystals. Part II. Comparison with Observations”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 145:855 (1934), 388–404 | DOI | MR
[13] Eckart C., “The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity”, Physical Review, 73:4 (1948), 373–382 | DOI | MR | Zbl
[14] Bilby B.A., Bullough R., Smith E., “Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 231:1185 (1955), 263–273 | DOI | MR
[15] Kondo K., “Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint”, Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, Division D-I, v. 1, ed. Kondo K., Gakujutsu Bunken Fukyo-Kai, 1955, 6–17 | MR
[16] Kroner E., General continuum theory of dislocations and self-stresses, Mir, M., 1965, 103 pp. (In Russ.)
[17] Noll W., “Materially uniform simple bodies with inhomogeneities”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 1–32 | DOI | MR
[18] Wang C.-C., “On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 33–94 | DOI | MR | Zbl
[19] De Vit R., Continuum theory of dislocations, Mir, M., 1977, 208 pp. (In Russ.)
[20] Spivak M., Calculus on manifolds, Mir, M., 1968, 164 pp. (In Russ.) | MR
[21] Lee J.M., Introduction to Smooth Manifolds, Springer New York, New York, 2012 | DOI | MR
[22] Marsden J.E., Hughes T.JR., Mathematical foundations of elasticity, Courier Corporation, New York, 1994, 556 pp. | DOI | MR
[23] Rakotomanana L., A Geometric Approach to Thermomechanics of Dissipating Continua, Birkhäuser, Boston, MA, 2004, 265 pp. | DOI | MR | Zbl
[24] Epstein M., The Geometrical Language of Continuum Mechanics, Cambridge University Press, Cambridge, 2010 | DOI | MR | Zbl
[25] Frankel T., The geometry of physics: an introduction, Cambridge University Press, Cambridge, 2011 | DOI | MR | Zbl
[26] Steinmann P., Geometrical Foundations of Continuum Mechanics, Springer, Berlin–Heidelberg, 2015 | DOI | MR | Zbl
[27] Lychev S., Koifman K., Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics, De Gruyter, Berlin, 2018 | DOI | MR
[28] Lychev S.A., Koifman K.G., “Geometric Aspects of the Theory of Incompatible Deformations. Part I. Uniform Configurations”, Nanomechanics Science and Technology: An International Journal, 7:3 (2016), 177–233 | DOI | MR
[29] Lychev S.A., Koifman K.G., “Geometric Aspects of the Theory of Incompatible Deformations. Part II. Strain and Stress Measures”, Nanomechanics Science and Technology: An International Journal, 10:2 (2019), 97–121 | DOI | MR
[30] Lychev S., Koifman K., “Material Affine Connections for Growing Solids”, Lobachevskii Journal of Mathematics, 41:10 (2020), 2034–2052 | DOI | MR | Zbl
[31] Lychev S., Koifman K., “Contorsion of Material Connection in Growing Solids”, Lobachevskii Journal of Mathematics, 42:8 (2021), 1852–1875 | DOI | MR | Zbl
[32] Lychev S., Koifman K., Bout D., “Finite Incompatible Deformations in Elastic Solids: Relativistic Approach”, Lobachevskii Journal of Mathematics, 43:7 (2022), 1670–1695 | DOI | MR
[33] Salamatova V.Yu., “Finite Element Method for 3D Deformation of Hyperelastic Materials”, Differential Equations, 55:7 (2019), 990–999 | DOI | MR | Zbl
[34] Alexander H., Haasen P., “Dislocations and Plastic Flow in the Diamond Structure”, Solid State Physics, 22 (1969), 27–158 | DOI
[35] Yonenaga I., Sumino K., “Dislocation dynamics in the plastic deformation of silicon crystals I. Experiments”, Physica Status Solidi A, 50:2 (1978), 685–693 | DOI
[36] Suezawa M., Sumino K., Yonenaga I., “Dislocation dynamics in the plastic deformation of silicon crystals. II. Theoretical analysis of experimental results”, Physica Status Solidi A, 51:1 (1979), 217–226 | DOI
[37] Maohua Lin, Xinjiang Wu, Xinqin Liao, Min Shi, Disheng Ou, Chi-Tay Tsai, “3D Viscoplastic Finite Element Modeling of Dislocation Generation in a Large Size Si Ingot of the Directional Solidification Stage”, Materials, 12:17 (2019), 2783 | DOI