Evolution of the field of distributed defects in a crystal during contact interaction with a system of rigid stamps
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 55-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article discusses the mathematical modeling for the evolution of the stress-strain state and fields of defects in crystals during their contact interaction with a system of rigid punches. From a macroscopic point of view, the redistribution of defects is characterized by inelastic (viscoplastic) deformation, and therefore the processes under study can be classified as elastic-viscoplastic. Elastic and inelastic deformations are assumed to be finite. To take into account inelastic deformations, it is proposed to use a differential-geometric approach, in which the evolution of the fields of distributed defects is completely characterized by measures of incompatible deformations and quantified by material connection invariants. This connection is generated by a non-Euclidean metric, which, in turn, is given by a field of symmetric linear mappings that define (inconsistent) deformations of the crystal. Since the development of local deformations depends both on the contact interaction at the boundary and on the distribution of defects in the bulk of the crystal, the simulation problem turns out to be coupled. It is assumed that the local change in the defect density is determined by the first-order Alexander Haasen Sumino evolutionary law, which takes into account the deviatoric part of the stress field. An iterative algorithm has been developed to find coupled fields of local deformations and defects density. The numerical analysis for the model problem was provided for a silicon crystal in the form of a parallelepiped, one face of which is rigidly fixed, and a system of rigid stamps acts on the opposite face. The three-constant Mooney Rivlin potential was used to model the local elastic response.
Keywords: distributed defects, finite strains, hyperelasticity, strain incompatibility, evolution of defect fields, contact interaction, finite elements.
@article{VSGU_2022_28_1-2_a4,
     author = {T. N. Lycheva and S. A. Lychev},
     title = {Evolution of the field of distributed defects in a crystal during contact interaction with a system of rigid stamps},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {55--73},
     year = {2022},
     volume = {28},
     number = {1-2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a4/}
}
TY  - JOUR
AU  - T. N. Lycheva
AU  - S. A. Lychev
TI  - Evolution of the field of distributed defects in a crystal during contact interaction with a system of rigid stamps
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2022
SP  - 55
EP  - 73
VL  - 28
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a4/
LA  - ru
ID  - VSGU_2022_28_1-2_a4
ER  - 
%0 Journal Article
%A T. N. Lycheva
%A S. A. Lychev
%T Evolution of the field of distributed defects in a crystal during contact interaction with a system of rigid stamps
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2022
%P 55-73
%V 28
%N 1-2
%U http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a4/
%G ru
%F VSGU_2022_28_1-2_a4
T. N. Lycheva; S. A. Lychev. Evolution of the field of distributed defects in a crystal during contact interaction with a system of rigid stamps. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 55-73. http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a4/

[1] Bei Yu, Pan D.Z., Design for Manufacturability with Advanced Lithography, Springer, 2016, 175 pp. | DOI

[2] Xi Chen Ed., Mechanical Self-Assembly, Springer, 2013 | DOI

[3] Lobontiu N., Garcia E., Mechanics of Microelectromechanical Systems, Springer-Verlag US, 2005

[4] Weingarten J., “Sulle superficie di discontinuita nella teoria della elasticita dei corpi solidi”, Rend. Reale Accad. dei Lincei, classe di sci., fis., mat. e nat., 10:1 (1901), 57–60 | MR

[5] Volterra V., “Sur l'équilibre des corps élastiques multiplement connexes”, Annales scientifiques de l'École Normale Supérieure, Série 3, 24 (1907), 401–517 | DOI | MR

[6] Cauchy A.-L., “De la pression ou tension dans un corps solide”, Ex. de Math., 1827, 42–56 | DOI

[7] Cauchy A.-L., “Sur la condensation et la dilatation des corps solides”, Ex. de Math., 1827, 60–69 | DOI

[8] Frenkel J., “Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper”, Zeitschrift für Physik, 37:7–8 (1926), 572–609 | DOI

[9] Polanyi M., “Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte”, Zeitschrift für Physik, 89:9–10 (1934), 660–664 | DOI

[10] Orowan E., “Zur Kristallplastizität. I”, Zeitschrift für Physik, 89:9–10 (1934), 605–613 | DOI

[11] Taylor G.I., “The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 145:855 (1934), 362–387 | DOI | MR

[12] Taylor G.I., “The Mechanism of Plastic Deformation of Crystals. Part II. Comparison with Observations”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 145:855 (1934), 388–404 | DOI | MR

[13] Eckart C., “The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity”, Physical Review, 73:4 (1948), 373–382 | DOI | MR | Zbl

[14] Bilby B.A., Bullough R., Smith E., “Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 231:1185 (1955), 263–273 | DOI | MR

[15] Kondo K., “Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint”, Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, Division D-I, v. 1, ed. Kondo K., Gakujutsu Bunken Fukyo-Kai, 1955, 6–17 | MR

[16] Kroner E., General continuum theory of dislocations and self-stresses, Mir, M., 1965, 103 pp. (In Russ.)

[17] Noll W., “Materially uniform simple bodies with inhomogeneities”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 1–32 | DOI | MR

[18] Wang C.-C., “On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 33–94 | DOI | MR | Zbl

[19] De Vit R., Continuum theory of dislocations, Mir, M., 1977, 208 pp. (In Russ.)

[20] Spivak M., Calculus on manifolds, Mir, M., 1968, 164 pp. (In Russ.) | MR

[21] Lee J.M., Introduction to Smooth Manifolds, Springer New York, New York, 2012 | DOI | MR

[22] Marsden J.E., Hughes T.JR., Mathematical foundations of elasticity, Courier Corporation, New York, 1994, 556 pp. | DOI | MR

[23] Rakotomanana L., A Geometric Approach to Thermomechanics of Dissipating Continua, Birkhäuser, Boston, MA, 2004, 265 pp. | DOI | MR | Zbl

[24] Epstein M., The Geometrical Language of Continuum Mechanics, Cambridge University Press, Cambridge, 2010 | DOI | MR | Zbl

[25] Frankel T., The geometry of physics: an introduction, Cambridge University Press, Cambridge, 2011 | DOI | MR | Zbl

[26] Steinmann P., Geometrical Foundations of Continuum Mechanics, Springer, Berlin–Heidelberg, 2015 | DOI | MR | Zbl

[27] Lychev S., Koifman K., Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics, De Gruyter, Berlin, 2018 | DOI | MR

[28] Lychev S.A., Koifman K.G., “Geometric Aspects of the Theory of Incompatible Deformations. Part I. Uniform Configurations”, Nanomechanics Science and Technology: An International Journal, 7:3 (2016), 177–233 | DOI | MR

[29] Lychev S.A., Koifman K.G., “Geometric Aspects of the Theory of Incompatible Deformations. Part II. Strain and Stress Measures”, Nanomechanics Science and Technology: An International Journal, 10:2 (2019), 97–121 | DOI | MR

[30] Lychev S., Koifman K., “Material Affine Connections for Growing Solids”, Lobachevskii Journal of Mathematics, 41:10 (2020), 2034–2052 | DOI | MR | Zbl

[31] Lychev S., Koifman K., “Contorsion of Material Connection in Growing Solids”, Lobachevskii Journal of Mathematics, 42:8 (2021), 1852–1875 | DOI | MR | Zbl

[32] Lychev S., Koifman K., Bout D., “Finite Incompatible Deformations in Elastic Solids: Relativistic Approach”, Lobachevskii Journal of Mathematics, 43:7 (2022), 1670–1695 | DOI | MR

[33] Salamatova V.Yu., “Finite Element Method for 3D Deformation of Hyperelastic Materials”, Differential Equations, 55:7 (2019), 990–999 | DOI | MR | Zbl

[34] Alexander H., Haasen P., “Dislocations and Plastic Flow in the Diamond Structure”, Solid State Physics, 22 (1969), 27–158 | DOI

[35] Yonenaga I., Sumino K., “Dislocation dynamics in the plastic deformation of silicon crystals I. Experiments”, Physica Status Solidi A, 50:2 (1978), 685–693 | DOI

[36] Suezawa M., Sumino K., Yonenaga I., “Dislocation dynamics in the plastic deformation of silicon crystals. II. Theoretical analysis of experimental results”, Physica Status Solidi A, 51:1 (1979), 217–226 | DOI

[37] Maohua Lin, Xinjiang Wu, Xinqin Liao, Min Shi, Disheng Ou, Chi-Tay Tsai, “3D Viscoplastic Finite Element Modeling of Dislocation Generation in a Large Size Si Ingot of the Directional Solidification Stage”, Materials, 12:17 (2019), 2783 | DOI