General theory of orthotropic shells. Part I
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 46-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Modern mechanical engineering sets the tasks of calculating thin-walled structures that simultaneously combine sometimes mutually exclusive properties: lightness and economy on the one hand and high strength and reliability on the other. In this regard, the use of orthotropic materials and plastics seems quite justified. The article demonstrates the complex representation method of the equations of the orthotropic shells general theory, which allowed in a complex form to significantly reduce the number of unknowns and the order of the system of differential equations. A feature of the proposed technique for orthotropic shells is the appearance of complex conjugate unknown functions. Despite this, the proposed technique allows for a more compact representation of the equations, and in some cases it is even possible to calculate a complex conjugate function. In the case of axisymmetric deformation, this function vanishes, and in other cases the influence of the complex conjugate function can be neglected. Verification of the correctness of the proposed technique was demonstrated on a shallow orthotropic spherical shell of rotation under the action of a distributed load. In the limiting case, results were obtained for an isotropic shell as well.
Keywords: mechanics, differential equations, orthotropic plates and shells, shallow shells of rotation, axisymmetric deformation, Bessel equation and functions, Lommel function, hypergeometric functions.
@article{VSGU_2022_28_1-2_a3,
     author = {P. G. Velikanov and Y. P. Artyukhin},
     title = {General theory of orthotropic shells. {Part~I}},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {46--54},
     year = {2022},
     volume = {28},
     number = {1-2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a3/}
}
TY  - JOUR
AU  - P. G. Velikanov
AU  - Y. P. Artyukhin
TI  - General theory of orthotropic shells. Part I
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2022
SP  - 46
EP  - 54
VL  - 28
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a3/
LA  - ru
ID  - VSGU_2022_28_1-2_a3
ER  - 
%0 Journal Article
%A P. G. Velikanov
%A Y. P. Artyukhin
%T General theory of orthotropic shells. Part I
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2022
%P 46-54
%V 28
%N 1-2
%U http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a3/
%G ru
%F VSGU_2022_28_1-2_a3
P. G. Velikanov; Y. P. Artyukhin. General theory of orthotropic shells. Part I. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 46-54. http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a3/

[1] Novozhilov V.V. Theory of thin shells, Sudpromgiz, M., 1962, 431 pp. (In Russ.)

[2] Artyukhin Y.P., “Calculation of single-layer and multilayer orthotropic shells for local loads”, Research on the theory of plates and shells, 4, Izd.-vo KGU, Kazan, 1966, 91–110 (In Russ.)

[3] Artyukhin Y.P., Velikanov P.G., “Effect of local loads on orthotropic spherical and conical shells of rotation”, Analytical mechanics, stability and motion control, materials of the All-Russian seminar, Izd.-vo KGU, Kazan, 2008, 22–23 (In Russ.)

[4] Ambartsumyan S.A., General theory of anisotropic shells, Fizmatgiz, M., 1961, 384 pp. (In Russ.)

[5] Stanescu K., Vissarion V., “Static-geometric analogy for thin elastic shells with orthotropy of the material and its application to the calculation of flat shells and cylindrical shells of circular cross-section”, Revue de Mechanique Appliquee (RPR), 3:1 (1958) (In Russ.) | MR

[6] Artyukhin Yu.P., Guryanov N.G., Kotlyar L.M., The Mathematics 4.0 system and its applications in mechanics, textbook, Kazanskoe matematicheskoe obshchestvo. Izd-vo KamPI, Kazan, 2002, 415 pp. (In Russ.)

[7] Velikanov P.G., Fundamentals of work in the Mathematics system, laboratory workshop, Izd-vo Kazanskogo gos. tekhn. un-ta, Kazan, 2010, 40 pp. (In Russ.)

[8] Gradstein I.S., Ryzhik I.M., Tables of integrals, sums of series and products, Nauka, M., 1971, 1108 pp. (In Russ.) | MR

[9] Guryanov N.G., Tyuleneva O.N., Orthotropic plates and flat shells. Theory, methods of solving boundary value problems, KGU, Kazan, 2002, 112 pp. (In Russ.)

[10] Matthews F., Rollings R., Composite materials. Mechanics and technology, Tekhnosfera, M., 2004, 408 pp. (In Russ.)

[11] Kornishin M.S., Isanbayeva F.S., Flexible plates and panels, Nauka, M., 1968, 260 pp. (In Russ.)