How the distance between subspaces in the metric of a spherical opening affects the geometric structure of a symmetric space
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 23-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A relationship is found between the metric of a spherical opening on the space of all subspaces of a symmetric space and some numerical characteristic of the subspace. It is known that, for example, in $L_1$ this characteristic takes only two values (i.e. this is a binary space), while in $L_2$ there are infinitely many values. Using the connection found, the necessary conditions for the binarity of a symmetric space were generalized.
Keywords: symmetric space, Orlicz space, spherical opening between subspaces, disjoint functions, independent functions, strongly embedded subspace.
@article{VSGU_2022_28_1-2_a1,
     author = {S. I. Strakhov},
     title = {How the distance between subspaces in the metric of a spherical opening affects the geometric structure of a symmetric space},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {23--31},
     year = {2022},
     volume = {28},
     number = {1-2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a1/}
}
TY  - JOUR
AU  - S. I. Strakhov
TI  - How the distance between subspaces in the metric of a spherical opening affects the geometric structure of a symmetric space
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2022
SP  - 23
EP  - 31
VL  - 28
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a1/
LA  - ru
ID  - VSGU_2022_28_1-2_a1
ER  - 
%0 Journal Article
%A S. I. Strakhov
%T How the distance between subspaces in the metric of a spherical opening affects the geometric structure of a symmetric space
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2022
%P 23-31
%V 28
%N 1-2
%U http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a1/
%G ru
%F VSGU_2022_28_1-2_a1
S. I. Strakhov. How the distance between subspaces in the metric of a spherical opening affects the geometric structure of a symmetric space. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 23-31. http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a1/

[1] Strakhov S.I., “On a characteristic of strongly embedded subspaces in symmetric spaces”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 27:2 (2021), 25–32 (In Russ.) | DOI | MR | Zbl

[2] Novikov S.Ya., Semenov E.M., Tokarev E.V., “The structure of subspaces of the space $\Lambda_p(\phi)$”, Dokl. Akad. Nauk SSSR, 20 (1979), 760–761 | MR | Zbl

[3] Rosenthal H.P., “On subspaces of $L_{p}$”, Annals of Mathematics, 97:2 (1973), 344–373 | DOI | MR | Zbl

[4] Lindenstrauss J., Tzafriri L., “On Orlicz sequence spaces. III”, Israel Journal of Mathematics, 10:3 (1971), 368–389 | DOI | MR

[5] Astashkin S.V., The Rademacher system in function spaces, Fizmatlit, M., 2017, 549 pp. (In Russ.)

[6] Berkson E., “Some metrics on the subspaces of a Banach space”, Pacific Journal of Mathematics, 13:1 (1963), 7–22 | DOI | MR | Zbl

[7] Novikov S.Ya., Geometric properties of symmetric spaces, Candidate's of Physical and Mathematical Sciences thesis, Voronezh, 1980 (In Russ.)

[8] Gokhberg I.Ts., Krein M.G., “Fundamental aspects of defect numbers, root numbers and indexes of linear operators”, Uspekhi Mat. Nauk, 12:2(74) (1957), 43–118 (In Russ.) | MR | Zbl

[9] Astashkin S.V., “On symmetric spaces containing isomorphic copies of Orlicz sequence spaces”, Commentationes Mathematicae, 56:1 (2016), 29–44 | DOI | MR | Zbl

[10] Astashkin S.V., The structure of subspaces in Orlicz spaces between $L_1$ and $L_2$, 2022, arXiv: 2208.07215 | DOI | MR

[11] Nakamoto R., “The spherical gap of operators”, Linear Algebra and Its Applications, 251 (1997), 89–95 | DOI | MR | Zbl

[12] Ostrovskii M.I., “Topologies on the set of all subspaces of a Banach space and related questions of Banach space geometry”, Quaestiones Mathematicae, 17:3 (1994), 259–319 | DOI | MR | Zbl

[13] Astashkin S.V., Strakhov S.I., “On Symmetric Spaces With Convergence in Measure on Reflexive Subspaces”, Russian Mathematics, 62:8 (2018), 1–8 | DOI | MR | Zbl

[14] Figiel T., Johnson W.B., Tzafriri L., “On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces”, Journal of Approximation Theory, 13:4 (1975), 395–412 | DOI | MR | Zbl