Properties of measures on “stable” boolean algebras
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 7-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the properties of finitely additive measures with values in a topological abelian group and defined on a wide class of Boolean algebras, which covers algebras with SIP and algebras $\Gamma_\nu$ ( if $\nu$ satisfies some conditions). We establish sufficient conditions for the sequences of such measures to be uniformly strongly continuous. Novelty in this theme is that we do not require uniform exhaustivity and, in some theorems, even exhaustivity for measures. Applications to weak convergence of measures are presented.
Keywords: boolean algebra, topological abelian group, strongly continuous measure, exhaustive measure, uniform exhaustibility of the family of measures, uniform boundedness of the family of measures, poor convergence of measures.
@article{VSGU_2022_28_1-2_a0,
     author = {M. G. Svistula and T. A. Sribnaya},
     title = {Properties of measures on {\textquotedblleft}stable{\textquotedblright} boolean algebras},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--22},
     year = {2022},
     volume = {28},
     number = {1-2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a0/}
}
TY  - JOUR
AU  - M. G. Svistula
AU  - T. A. Sribnaya
TI  - Properties of measures on “stable” boolean algebras
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2022
SP  - 7
EP  - 22
VL  - 28
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a0/
LA  - ru
ID  - VSGU_2022_28_1-2_a0
ER  - 
%0 Journal Article
%A M. G. Svistula
%A T. A. Sribnaya
%T Properties of measures on “stable” boolean algebras
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2022
%P 7-22
%V 28
%N 1-2
%U http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a0/
%G ru
%F VSGU_2022_28_1-2_a0
M. G. Svistula; T. A. Sribnaya. Properties of measures on “stable” boolean algebras. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 28 (2022) no. 1-2, pp. 7-22. http://geodesic.mathdoc.fr/item/VSGU_2022_28_1-2_a0/

[1] Bhaskara Rao M., Bhaskara Rao K.P.S., “Charges on Boolean algebras and almost discrete spaces”, Mathematika, 20:12 (1973), 214–223 | DOI | MR | Zbl

[2] Klimkin V.M., Svistula M.G., “On the Pointwise Limit of Vector Charges with the Saks Property”, Mathematical Notes, 74:3 (2003), 407–415 (In Russ.) | DOI | MR | Zbl

[3] Luschgy H., Solecki S., “Strong continuity of invariant probability charges”, Colloquium Mathematicum, 101:1 (2004), 135–142 | DOI | MR | Zbl

[4] Cavaliere P., de Lucia P., Weber H., “Approximation of finitely additive functions with values in topological groups”, Zeitschrift für Analysis und ihre Anwendungen = Journal of analysis and its applications, 32:4 (2013), 477–495 | DOI | MR | Zbl

[5] Diestel J., Jr. Uhl J., Vector measures, Mathematical Surveys and Monographs, 15, American Mathematical Society, Providence, 1977, 319 pp. https://www.ams.org/books/surv/015/surv015-endmatter.pdf | DOI | Zbl

[6] Freniche F.J., “The Vitali-Hahn-Saks theorem for Boolean algebras with the subsequential interpolation property”, Proceedings of the American Mathematical Society, 92:3 (1984), 362–366 | DOI | MR | Zbl

[7] Musial K., “Absolute Continuity and the Range of Group Valued Measure”, Bulletin de l'Academie Polonaise des Sciences. Serie de sciences math., astr. et phys., XXI:2 (1973), 105–113 https://www.researchgate.net/profile/Kazimierz-Musial-2/publication/284178504_Absolute_Continuity_and_the_Range_of_Group_Yalued_Measure/links/564e305d08ae1ef9296c67ad/Absolute-Continuity-and-the-Range-of-Group-Yalued-Measure.pdf | MR | Zbl

[8] Aleksyuk V.N., Set functions, LGPI, L., 1982, 78 pp. (In Russ.) | MR

[9] Klimkin V.M., Introduction to the theory of set functions, Izd-vo Saratovskogo universiteta, Kuibyshevskii filial, Saratov, 1989, 210 pp. (In Russ.)

[10] Bogachev V.I., Fundamentals of measure theory, v. 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2003, 576 pp. (In Russ.)

[11] Shiryaev A.N., Probability, Nauka, M., 1980, 574 pp. (In Russ.)

[12] Bogachev V.I., Fundamentals of measure theory, v. 1, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2003, 544 pp. (In Russ.)

[13] Candeloro D., “Alcuni teoremi di uniforme limitatezza”, Rendiconti dell'Accademia Nazionale detta dei XL, 9 (1985), 249–260 https://www.researchgate.net/publication/237311429_Alcuni_teoremi_di_uniforme_limitatezza | MR | Zbl

[14] Schachermayer W., “On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras”, Dissertationes Math. (Rozprawy Mat.), 214 (1983), 1–36 https://eudml.org/doc/268517 | MR