@article{VSGU_2021_27_4_a4,
author = {K. A. Mushankova and L. V. Stepanova},
title = {Molecular dynamic modeling of stress fields in plates with a central crack made of materials with a face-centered cubic lattice},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {68--82},
year = {2021},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_4_a4/}
}
TY - JOUR AU - K. A. Mushankova AU - L. V. Stepanova TI - Molecular dynamic modeling of stress fields in plates with a central crack made of materials with a face-centered cubic lattice JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2021 SP - 68 EP - 82 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSGU_2021_27_4_a4/ LA - ru ID - VSGU_2021_27_4_a4 ER -
%0 Journal Article %A K. A. Mushankova %A L. V. Stepanova %T Molecular dynamic modeling of stress fields in plates with a central crack made of materials with a face-centered cubic lattice %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2021 %P 68-82 %V 27 %N 4 %U http://geodesic.mathdoc.fr/item/VSGU_2021_27_4_a4/ %G ru %F VSGU_2021_27_4_a4
K. A. Mushankova; L. V. Stepanova. Molecular dynamic modeling of stress fields in plates with a central crack made of materials with a face-centered cubic lattice. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 4, pp. 68-82. http://geodesic.mathdoc.fr/item/VSGU_2021_27_4_a4/
[1] Hello G., Tahar M.B., Roelandt J.-M., “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium.”, International Journal of Solids and Structures, 49:3–4 (2012), 556–566 | DOI
[2] Stepanova L.V., Yakovleva E.M., “Mixed-mode loading of the cracked plate under plane stress conditions”, PNRPU Mechanics Bulletin, 2014, no. 3, 129–162 | DOI
[3] Rashidi Moghaddam M., Ayatollahi M., Berto F., “The application of strain energy density criterion to fatigue crack growth behavior of cracked components”, Theoretical and Applied Fracture Mechanics, 97 (2018), 440–447 | DOI
[4] Razavi M.J., Aliha M.R.M., Berto F., “Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens”, Theoretical and Applied Fracture Mechanics, 97 (2018), 419–425 | DOI
[5] Malikova L., Vesely V., Seitl S., “Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria”, Frattura ed Integrita Strutturalle, 2015, no. 33, 25–32 | DOI
[6] Chandra S., Kumar N.N., Samal M.K., Chavan V.M., Patel R.J., “Molecular dynamics simulation of crack growth behavior in Al in the presence of vacancies”, Computational Materials Science, 117 (2016), 518–526 | DOI
[7] Andric P., Curtin W.A., “New theory for Mode I crack-tip dislocation emission”, Journal of Mechanics and Physics of Solids, 106 (2017), 315–337 | DOI
[8] Gao Y.-J., Deng Q.-Q., Huang L.Ye, Wen Z.C., Luo Zhi-R., “Atomistic modeling for mechanism of crack cleavage extension on nano-scale”, Computational Materials Science, 130 (2017), 64–75 | DOI
[9] Cui C.B., Beom H.G., “Molecular dynamics simulation of edge cracks in copper and aluminium single crystals”, Materials Science and Engineering: A, 609 (2014), 102–109 | DOI
[10] Stepanova L.V., Mathematical methods of fracture mechanics, FIZMATLIT, M., 2009, 336 pp. (in Russ.)
[11] Hellan K., Introduction to Fracture Mechanics, transl. from English, Mir, M., 1988, 364 pp. (in Russ.)
[12] Stepanova L.V., Roslyakov P.S., “Multi-parameter description of the crack-tip stress field: Analytic determination of coefficients of crack-tip stress expansions in the vicinity of the crack tips of two finite cracks in an infinite plane medium”, International Journal of Solids and Structures, 100–101 (2016), 11–28 | DOI
[13] Berinsky I.E., Dvas N.G., Krivtsov A.M., Kudarova A.M., Kuzkin V.A., Le-Zakharov A.A., Loboda O.S., Neugebauer I.I., Podolskaya E.A., Theoretical mechanics. Elastic and thermal properties of ideal crystals, textbook, Izd-vo Politekhn. un-ta, Saint Petersburg, 2009, 144 pp. (in Russ.)
[14] Gaillac R., Pullumbi P., Coudert F.-X., “ELATE: an open - source online application for analysis and visualization of elastic tensors”, Journal of Physics: Condensed Matter, 28:27 (2016), 275201 | DOI
[15] Guide to using the LAMMPS package
[16] Guide to using the OVITO package
[17] Sobhit Singh, Logan Lang, Viviana Dovale-Farelo, Uthpala Herath, Pedram Tavadze, Francois-Xavier Coudert, Aldo H. Romero, “MechElastic: A Python library for analysis of mechanical and elastic properties of bulk and 2D materials”, Computer Physics Communications, 267 (2021), 108068 | DOI