On the nature of additional space at cutting of spaces of cusp forms
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 4, pp. 7-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we study a space of cusp forms by the method of cutting. This space is a direct sum of the subspace of forms divided by the fixed cusp form named the cutting function and the additional space. If the additional space is zero we have the situation of exact cutting. In common case the cutting is not exact and it is important to research the nature of the additional space. We prove that the basis of the additional space can be described by the space of cusp forms of small weight. This weight is not more than 14 and often is equal to 4. We give examples of all cutting functions for all levels. We prove the theorem about the basis of the additional space to the space of cusp forms in the space of modular forms of the same level, weight and character. We use properties of eta-products, Biagioli formula for orders in cusps and Cohen — Oesterle formula for dimensions.
Keywords: modular forms, cusp forms, Dedekind eta–function, cusps, Eisenstein series, structure theorem, Cohen — Oesterle formula, Biagioli formula.
@article{VSGU_2021_27_4_a0,
     author = {G. V. Voskresenskaya},
     title = {On the nature of additional space at cutting of spaces of cusp forms},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--13},
     year = {2021},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_4_a0/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - On the nature of additional space at cutting of spaces of cusp forms
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 7
EP  - 13
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_4_a0/
LA  - ru
ID  - VSGU_2021_27_4_a0
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T On the nature of additional space at cutting of spaces of cusp forms
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 7-13
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_4_a0/
%G ru
%F VSGU_2021_27_4_a0
G. V. Voskresenskaya. On the nature of additional space at cutting of spaces of cusp forms. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 4, pp. 7-13. http://geodesic.mathdoc.fr/item/VSGU_2021_27_4_a0/

[1] Ono K., The web of modularity: arithmetic of the coefficients of modular forms and q-series, A.M.S., Providence, 2004, 216 pp. | DOI

[2] Koblitz N., Introduction To Elliptic Curves and Modular Forms, Mir, M., 1988, 320 pp. (In Russ.)

[3] Knapp A., Elliptic Curves, Faktorial Press, M., 2004, 488 pp. (In Russ.)

[4] Voskresenskaya G.V., “Dedekind $\eta$—Function in Modern Research”, Journal of Mathematical Sciences, 235 (2018), 788–833 | DOI

[5] Voskresenskaya G.V., “Exact Cutting in Spaces of Cusp Forms with Characters”, Mathematical Notes, 103:6 (2018), 881–891 | DOI | DOI

[6] Voskresenskaya G.V., “MacKay functions in spaces of higher levels”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 24:4 (2018), 13–18 (In Russ.) | DOI

[7] Gordon B., Sinor D., “Multiplicative properties of $\eta-$products”, Number Theory (Madras, 1987), Lecture Notes in Mathematics, 1395, eds. Alladi K., Springer, Berlin–Heidelberg, 1987, 173–200 | DOI

[8] Dummit D., Kisilevsky H., MasKay J., “Multiplicative products of $\eta-$ functions”, Contemp. Math., 45, 1985, 89–98

[9] Cohen H., Oesterle J., “Dimensions des espaces de formes modulaires”, Lecture Notes in Mathematics, 627, 1976, 69–78 | DOI

[10] Biagioli A.J.F., “The construction of modular forms as products of transforms of the Dedekind eta-function”, Acta Arithmetica, LIV:4 (1990), 273–300 | DOI