Decomposition of enzyme kinetics system with fast and slow variables in suicide substrate problem
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 83-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper an example of cooperative phenomenon, in which the substrate is known as suicide substrate, because it binds to the active enzyme as a substrate, inactivates because enzyme turns it into an inhibitor and provides an irreversible reaction is considered. In this case the substrate “commits suicide”. The aim of the work is to apply the method of integral manifolds to the reduction of the system of kinetics of suicide substrate. Work describes in detail the rationale for the decomposition algorithm of the enzyme kinetics problem for dynamical systems with fast and slow variables and the construction of integral manifolds for such systems, this article presents the results of applying the above methods to systems of the suicide substrate kinetics and compares solutions for four equations graphically. Comparisons of solutions for four equations are given graphically, the graphs are created using Microsoft Excel.
Keywords: differential equations, decomposition method, integral manifolds, cooperative phenomenon, enzyme kinetics, suicide substrate.
@article{VSGU_2021_27_3_a6,
     author = {M. A. Smetannikov},
     title = {Decomposition of enzyme kinetics system with fast and slow variables in suicide substrate problem},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {83--88},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a6/}
}
TY  - JOUR
AU  - M. A. Smetannikov
TI  - Decomposition of enzyme kinetics system with fast and slow variables in suicide substrate problem
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 83
EP  - 88
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a6/
LA  - ru
ID  - VSGU_2021_27_3_a6
ER  - 
%0 Journal Article
%A M. A. Smetannikov
%T Decomposition of enzyme kinetics system with fast and slow variables in suicide substrate problem
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 83-88
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a6/
%G ru
%F VSGU_2021_27_3_a6
M. A. Smetannikov. Decomposition of enzyme kinetics system with fast and slow variables in suicide substrate problem. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 83-88. http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a6/

[1] Sobolev V.A., Shchepakina E.A., Model reduction and critical phenomena in macrokinetics, FIZMATLIT, M., 2010, 320 pp. (In Russ.)

[2] Murray J.D., Mathematical Biology I. An Introduction, Springer, New York, 2001, 551 pp. https://booksee.org/book/1008393

[3] Voropaeva N.V., Sobolev V.A., Geometric decomposition of singularly perturbed systems, FIZMATLIT, M., 2009, 256 pp. (In Russ.)

[4] Strygin V.V., Sobolev V.A., Separation of motions by the method of integral manifolds, Nauka, M., 1988, 256 pp. (In Russ.) | MR

[5] Goldshtein V.M., Sobolev V.A., Qualitative analysis of singularly perturbed systems, In-t matematiki AN SSSR, Sib. otd-nie, Novosibirsk, 1988, 154 pp. (In Russ.)

[6] Shchepakina E.A., “Integral manifolds, duck trajectories and heat explosion”, Vestnik of Samara State University, 1995, special issue (In Russ.)

[7] Shchpakina E., Sobolev V., “Integral manifolds, canards and black swans”, Nonlinear Analysis: Theory, Methods Applications, 44:7 (2001), 897–908 | DOI | MR

[8] Sobolev V.A., “Integral manifolds and decomposition of singulary perturbed system”, Systems Control Letters, 5:3 (1984), 169–179 | DOI | MR | Zbl

[9] Mitropolskiy U.A., Lykova O.B., Integral manifolds in nonlinear mechanics, Nauka, M., 1973 (In Russ.)

[10] Knobloch H.-W., Aulbach B., “Singular perturbations and integral manifolds”, J. Math. Sci., 18:5 (1984), 415–424 | MR | Zbl

[11] Seiler N., Jung M.J., Koch-Weser J., Enzyme-activated Irreversible Inhibitors, Elsevier/North-Holland, Oxford, 1978

[12] Walsh C.T., “Suicide substrates, mechanism-based enzyme inactivators: recent developments”, Annu. Rev. Biochem., 53 (1984), 493–535 | DOI

[13] Berding C., Keymer A.E., Murray J.D., Slater A.F.G., “The population dynamics of acquired immunity to helminth infections”, J. Theor. Biol., 122:4 (1986), 459–471 | DOI | MR

[14] Bobylev N.A., Emelyanov S.V., Korovin S.K., Geometric methods in variational problems, Magistr, M., 1998, 658 pp. (In Russ.)

[15] Emelyanov S.V., Korovin S.K., Mamedov I.V., “Structural transformations and spatial decomposition of discrete controlled systems - quasi-splitting method”, Tekhn. kibernetika, 1986, no. 6, 118–128 (In Russ.)

[16] Korovin S.K., Mamedov I.G., Mamedova A.P., “Uniform stability with respect to a small parameter and stabilization of discrete singularly perturbed dynamical systems”, Tekhn. kibernetika, 1989, no. 1, 21–29 (In Russ.) | Zbl