@article{VSGU_2021_27_3_a6,
author = {M. A. Smetannikov},
title = {Decomposition of enzyme kinetics system with fast and slow variables in suicide substrate problem},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {83--88},
year = {2021},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a6/}
}
TY - JOUR AU - M. A. Smetannikov TI - Decomposition of enzyme kinetics system with fast and slow variables in suicide substrate problem JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2021 SP - 83 EP - 88 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a6/ LA - ru ID - VSGU_2021_27_3_a6 ER -
%0 Journal Article %A M. A. Smetannikov %T Decomposition of enzyme kinetics system with fast and slow variables in suicide substrate problem %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2021 %P 83-88 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a6/ %G ru %F VSGU_2021_27_3_a6
M. A. Smetannikov. Decomposition of enzyme kinetics system with fast and slow variables in suicide substrate problem. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 83-88. http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a6/
[1] Sobolev V.A., Shchepakina E.A., Model reduction and critical phenomena in macrokinetics, FIZMATLIT, M., 2010, 320 pp. (In Russ.)
[2] Murray J.D., Mathematical Biology I. An Introduction, Springer, New York, 2001, 551 pp. https://booksee.org/book/1008393
[3] Voropaeva N.V., Sobolev V.A., Geometric decomposition of singularly perturbed systems, FIZMATLIT, M., 2009, 256 pp. (In Russ.)
[4] Strygin V.V., Sobolev V.A., Separation of motions by the method of integral manifolds, Nauka, M., 1988, 256 pp. (In Russ.) | MR
[5] Goldshtein V.M., Sobolev V.A., Qualitative analysis of singularly perturbed systems, In-t matematiki AN SSSR, Sib. otd-nie, Novosibirsk, 1988, 154 pp. (In Russ.)
[6] Shchepakina E.A., “Integral manifolds, duck trajectories and heat explosion”, Vestnik of Samara State University, 1995, special issue (In Russ.)
[7] Shchpakina E., Sobolev V., “Integral manifolds, canards and black swans”, Nonlinear Analysis: Theory, Methods Applications, 44:7 (2001), 897–908 | DOI | MR
[8] Sobolev V.A., “Integral manifolds and decomposition of singulary perturbed system”, Systems Control Letters, 5:3 (1984), 169–179 | DOI | MR | Zbl
[9] Mitropolskiy U.A., Lykova O.B., Integral manifolds in nonlinear mechanics, Nauka, M., 1973 (In Russ.)
[10] Knobloch H.-W., Aulbach B., “Singular perturbations and integral manifolds”, J. Math. Sci., 18:5 (1984), 415–424 | MR | Zbl
[11] Seiler N., Jung M.J., Koch-Weser J., Enzyme-activated Irreversible Inhibitors, Elsevier/North-Holland, Oxford, 1978
[12] Walsh C.T., “Suicide substrates, mechanism-based enzyme inactivators: recent developments”, Annu. Rev. Biochem., 53 (1984), 493–535 | DOI
[13] Berding C., Keymer A.E., Murray J.D., Slater A.F.G., “The population dynamics of acquired immunity to helminth infections”, J. Theor. Biol., 122:4 (1986), 459–471 | DOI | MR
[14] Bobylev N.A., Emelyanov S.V., Korovin S.K., Geometric methods in variational problems, Magistr, M., 1998, 658 pp. (In Russ.)
[15] Emelyanov S.V., Korovin S.K., Mamedov I.V., “Structural transformations and spatial decomposition of discrete controlled systems - quasi-splitting method”, Tekhn. kibernetika, 1986, no. 6, 118–128 (In Russ.)
[16] Korovin S.K., Mamedov I.G., Mamedova A.P., “Uniform stability with respect to a small parameter and stabilization of discrete singularly perturbed dynamical systems”, Tekhn. kibernetika, 1989, no. 1, 21–29 (In Russ.) | Zbl