On discrete systems with potential operators
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 74-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main purpose of this work is to study the potentiality of a discrete system obtained from the system of the form $C(t, u)\dot u (t) + E(t, u) = 0$ with continuous time. The definition of potentiality of the corresponding discrete system is introduced. Necessary and sufficient conditions for its potentiality with respect to a given bilinear form are obtained. The algorithm for the construction of the corresponding functional—the analogue of the Hamiltonian action—is presented. The illustrative example is given.
Keywords: potential operators, discrete systems.
@article{VSGU_2021_27_3_a5,
     author = {V. M. Savchin and P. T. Trinh},
     title = {On discrete systems with potential operators},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {74--82},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a5/}
}
TY  - JOUR
AU  - V. M. Savchin
AU  - P. T. Trinh
TI  - On discrete systems with potential operators
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 74
EP  - 82
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a5/
LA  - ru
ID  - VSGU_2021_27_3_a5
ER  - 
%0 Journal Article
%A V. M. Savchin
%A P. T. Trinh
%T On discrete systems with potential operators
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 74-82
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a5/
%G ru
%F VSGU_2021_27_3_a5
V. M. Savchin; P. T. Trinh. On discrete systems with potential operators. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 74-82. http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a5/

[1] Trenogin V.A., Functional Analysis, textbook, 3rd edition, FIZMATLIT, M., 2002, 488 pp. (In Russ.)

[2] Santilli R.M., Foundations of Theoretical Mechanics, v. II, Springer-Verlag New York Inc, New York, 1983, 371 pp. http://www.santilli-foundation.org/docs/santilli-69.pdf | MR | Zbl

[3] Kong X., Wu H., Mei F., “Discrete optimal control for Birkhoffian systems”, Nonlinear Dynamics, 74 (2013), 711–719 | DOI | MR | Zbl

[4] Zhang H., Chen L., Gu S., Liu C., “The discrete variational principle and the first integrals of Birkhoff systems”, Chinese Physics, 16:3 (2007), 582–587 | DOI

[5] Filippov V.M., Savchin V.M., Shorokhov S.G., “Variational principles for nonpotential operators”, Journal of Mathematical Sciences (New York), 68:3 (1994), 275–398 | DOI | MR

[6] Savchin V.M., Mathematical methods in mechanics of infinite dimensional nonpotential systems, RUDN, M., 1991, 237 pp. (In Russ.) | MR

[7] Galiullin A.S., Gafarov G.G., Malaishka R.P., Khwan A.M., Analytical dynamics of Helmholtz, Birkhoff and Nambu systems, Redaktsiya zh-la UFN, M., 1997, 324 pp. (In Russ.)