@article{VSGU_2021_27_3_a4,
author = {O. N. Belova and D. V. Chapliy and L. V. Stepanova},
title = {Application of the {UMAT} subroutine for solving continuum mechanics problems (overview)},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {46--73},
year = {2021},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a4/}
}
TY - JOUR AU - O. N. Belova AU - D. V. Chapliy AU - L. V. Stepanova TI - Application of the UMAT subroutine for solving continuum mechanics problems (overview) JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2021 SP - 46 EP - 73 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a4/ LA - ru ID - VSGU_2021_27_3_a4 ER -
%0 Journal Article %A O. N. Belova %A D. V. Chapliy %A L. V. Stepanova %T Application of the UMAT subroutine for solving continuum mechanics problems (overview) %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2021 %P 46-73 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a4/ %G ru %F VSGU_2021_27_3_a4
O. N. Belova; D. V. Chapliy; L. V. Stepanova. Application of the UMAT subroutine for solving continuum mechanics problems (overview). Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 46-73. http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a4/
[1] ANSYS documentation, https://kashanu.ac.ir/Files/Content/ANSYS
[2] MSC Nastran documentation, , 1631 https://faq.cc.metu.edu.tr/tr/system/files/u16319/nastran_2020_doc_9/nastran_2020_doc_install.pdf
[3] Marc/Mentat documentation, https://ru.scribd.com/doc/22327176/Marc-User-s-Guide
[4] Abaqus documentation, https://abaqus-docs.mit.edu/2017/English/SIMACAEEXCRefMap/simaexc-c-docproc.htm
[5] Abaqus. Application of the complex in engineering tasks, Tesis, M., 2010, 104 pp. (In Russ.)
[6] Tavara L., Moreno L., Paloma E., Mantic V., “Accurate modelling of instabilities caused by multi-site interface-crack onset and propagation in composites using the sequentially linear analysis and Abaqus”, Composite Structures, 225 (2019), 110993 | DOI
[7] Jafaripour M., Taheri-Behrooz F., “Creep behavior modeling of polymeric composites using Schapery model based on micro-macromechanical approaches”, European Journal of Mechanics / A Solids, 81 (2020), 103963 | DOI | MR | Zbl
[8] Arruda M.R.T., Almeida-Fernandes L., Castro L., Correia J.R., “Tsai-Wu based orthotropic damage model”, Composites Part C: Open Access, 4 (2021), 100122 | DOI
[9] Tsai S.W., Wu E.M., “A general theory of strength for anisotropic materials”, J. Compos. Mater., 5:1 (1971), 58–80 | DOI
[10] Tsai S.W., “A survey of macroscopic failure criteria for composite materials”, J. Rein forced Plast. Compos., 3:1 (1984), 40–62 | DOI
[11] Lomakin E.V., Fedulov B.N., “Plastic deformation of stripes of stress-state-dependent material properties”, Vestnik of Samara University. Natural Science Series, 2007, no. 7(54), 263–279 (In Russ.)
[12] Lomakin E.V., Fedulov B.N., “Theory of plasticity and limit state of solids susceptible to the stress state type”, Vestnik of Lobachevsky University of Nizhni Novgorod, 2011, no. 4-4, 1595–1587 (In Russ.)
[13] Fedulov B.N. et al., “Modelling of thermoplastic polymer failure in fiber reinforcced comosites”, Composite Strucutres, 163 (2017), 293–301 | DOI
[14] Martinez-Paneda E., Fuentes-Alonso S., Betegon C., “Gradient-enhanced statistical analysis of cleavage fracture”, European Journal of Mechanics - A/Solids, 77 (2019), 103785 | DOI | MR | Zbl
[15] Martinez-Paneda E., Betegon C., “Modeling damage and fracture within strain-gradient plasticity”, International Journal of Solids and Structures, 59 (2015), 208–215 | DOI | MR
[16] Taylor G.I., “Plastic strain in metals”, Journal of the Institute of Metals, 62 (1938), 307–324
[17] Fernandez-Sousa R., Betegon C., Martinez-Paneda E., “Analysis of the influence of microstructural traps on hydrogen assisted fatigue”, Acta Materialia, 199 (2020), 253–263 | DOI
[18] Shlyannikov V.N., Tumanov A.V., Khamidullin R.M., “Strain gradient effects at the crack tip under plane strain and plane stress conditions”, Physical Mesomechanics, 24:3 (2021), 257–268 | DOI | DOI
[19] Shlyannikov V., Martinez-Paneda E., Tumanov A., Tartygasheva A., “Crack tip fields and fracture resistance parameters based on strain gradient plasticity”, International Journal of Solids and Structures, 208–209 (2021), 63–82 | DOI | MR
[20] Shlyannikov V., Martinez-Paneda E., Tumanov A., Khamidullin R., “Mode I and Mode II stress intensity factors and dislocation density behaviour in strain gradient plasticity”, Theoretical and Applied Fracture Mechanics, 116 (2021), 103128 | DOI
[21] Fengxia O., Abaqus implementation of creep failure in polymer matrix composites with transverse isotropy, Ph. D. Thesis, Akron, 2005, 90 pp.
[22] Robin D.N., Binienda W.K., Ruggles M.B., “Creep of Polymer Matrix Composites. I: Norton/Bailey Creep Law for Transverse Isotropy”, Jornal of Engineering Mechanics, 129:3 (2003), 310–317 | DOI
[23] Alotta G., Barrera O., Cocks A.C.F., Paola M.D., “On the behavior of a three-dimensional fractional viscoelastic constitutive model”, Meccanica, 52:9 (2016), 2127–2142 | DOI | MR
[24] Alotta G., Barrera O., Cocks A., Paola M., “The finite element implementation of 3D fractional viscoelastic constitutive models”, Finite Elements in Analysis and Design, 146 (2018), 28–41 | DOI | MR
[25] Li J. et al., “Creep analyses for pipe bends under combined internal pressure and bending loads”, International Journal of Pressure Vessels and Piping, 193 (2021), 104450 | DOI
[26] Sun T. et al., “Experimental and numerical research on the nonlinear creep response of polymeric composites under humid environments”, Composite Structures, 251 (2020), 112673 | DOI
[27] Kim J.H. et al., “Prestrain-dependent viscoplastic damage model for austenitic stainless steel and implementation to ABAQUS user-defined material subroutine”, Computational Materials Science, 67 (2013), 273–281 | DOI
[28] O'Ceallaigh C., Sikora K., McPolin D., Harte A.M., “Modelling the hygro-mechanical creep behaviour of FRP reinforced timber elements”, Construction and Building Materials, 259 (2020), 119899 | DOI
[29] Pavkovic K., Stepinac M., Rajcic V., “Brittle failure modes in reinforced and non-reinforced timber joint with large diameter fastener loaded parallel to grain”, Engineering Structures, 222 (2020), 111104 | DOI
[30] Gharib M., Hassanieh A., Valipour H., Bradford M. A., “Three-dimensional constitutive modelling of arbitrarily orientated timber based on continuum damage mechanics”, Finite Elements in Analysis and Design, 135 (2017), 79–90 | DOI
[31] Eslami H., Jayasinghe L.B., Waldmann D., “Nonlinear three-dimensional anisotropic material model for failure analysis of timber”, Engineering Failure Analysis, 130 (2021), 105764 | DOI
[32] Hoffman O., “The brittle strength of orthotropic materials”, Journal of Composites, 1:2 (1967), 200–206 | DOI
[33] Sandhaas C. Van de Kuilen J.W., Blass H.J., “Constitutive model for wood based on continuum damage mechanics”, 12th World Conference on Timber Engineering (Auckland, 2012) http://resolver.tudelft.nl/uuid:55c1c5e5-9902-43ad-a724-62bb063c3c80
[34] Zhang J. et al., “Characterizing the three-stage rutting behavior of asphalt pavement with semi-rigid base by using UMAT in ABAQUS”, Construction and Building Materials, 140 (2017), 496–507 | DOI
[35] Zhao Y., Jiang L., Zhou L., “Ambient Temperature and Vehicle Loading Effects on Asphalt Concrete Pavement Rutting Development”, Proceeding of 5th International Conference on Transportation Engineering, 2015, 1084–1091 | DOI
[36] Ban H., Im S., Kim Y.R., “Nonlinear viscoelastic approach to model damage associated performance behavior of asphaltic mixture and pavement structure”, Can. J. Civ. Eng., 40:4 (2013), 313–323 | DOI
[37] Xia K., “Finite element modeling of dynamic tire/pavement interaction”, Proceedings of the Pavements and Materials: Characterization and Modeling Symposium, 2010, 204–214 | DOI
[38] Gurson A.L., “Continuum theory of ductile rupture by void nucleation and growth: Part I-yield criteria and flow rules for porous ductile media”, J. Eng. Mater. Technol., 99 (1977), 2–15 | DOI
[39] Tvergaard V., Needleman A., “Analysis of the cup-cone fracture in a round tensile bar”, Acta Metallurgica, 32:1 (1984), 157–169 | DOI
[40] Khan A.S., Suh Y.S., Kazmi R., “Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys”, International Journal of Plasticity, 20:12 (2004), 2233–2248 | DOI | Zbl
[41] Liang R., Khan A.S., “A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures”, International Journal of Plasticity, 15:9 (1999), 963–980 | DOI | Zbl
[42] Lemaitre J., “How to use damage mechanics”, Nuclear Engineering and Design, 80:2 (1984), 233–245 | DOI | MR
[43] Silling S.A., “Reformulation of elasticity theory for discontinuities and long-range forces”, J. Mech. Phys. Solids, 48:1 (2000), 175–209 | DOI | MR | Zbl
[44] Bobaru F, Foster J.T., Geubelle P.H., Silling S.A., Handbook of Peridynamic Modeling, Taylor and Francis Group, New York, 2017, 530 pp. | DOI | MR
[45] Ha Y.D., Bobaru F., “Studies of dynamic crack propagation and crack branching with peridynamics”, International Journal of Fracture, 162:1–2 (2010), 229–244 | DOI | Zbl
[46] Ha Y.D., Bobaru F., “Characteristics of dynamic brittle fracture captured with peridynamics”, Engineering Fracture Mechanics, 78:6 (2011), 1156–1168 | DOI
[47] Ha Y.D., Bobaru F., “Dynamic brittle fracture captured with peridynamics”, Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, 2011, 437–442 | DOI
[48] Oterkus E., Oterkus S., Madenci E., Peridynamic Modeling, Numerical Techniques, and Applications, Elsevier Series in Mechanics of Advanced Materials, 2021, 462 pp. | DOI
[49] Kuhn C., Muller R., “A continuum phase field model for fracture”, Engineering Fracture Mechanics, 77:18 (2010), 3625–3634 | DOI
[50] Schneider D., Schoof E., Huang Y., Selzer M., Nestler B., “Phase-field modeling of crack propagation in multiphase systems”, Computer Methods in Applied Mechanics and Engineering, 312 (2016), 186–195 | DOI | MR | Zbl
[51] Bie Y.H., Liu Z.M., Yang H. et al., “Abaqus implementation of dual peridynamics for brittle fracture”, Computer Methods in Applied Mechanics and Engineering, 372 (2020), 113398 | DOI | MR | Zbl
[52] Wang Y., Zhou X., Wang Y., “A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids”, International Journal of Solids and Structures, 134 (2018), 89–115 | DOI
[53] Griffith A., “The Phenomena of Rupture and Flow in Solids”, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Math. or Phys. Character (1896–1934), 221 (1921), 163–198 http://ia802702.us.archive.org/31/items/philtrans01457975/01457975.pdf | Zbl
[54] Msekh M.A. et al., “Abaqus implementation of phase-field model for brittle fracture”, Computational Materials Science, 96, part B (2014), 472–484 | DOI
[55] Navidtehrani Y., Betegon C., Martinez-Paneda E., “A unified Abaqus implementation of the phase field fracture method using only a user material subroutine”, Materials, 14:8 (2021), 1913 | DOI
[56] Navidtehrani Y., Betegun C., Martinez-Paseda E., “A simple and robust Abaqus implementation of the phase field fracture method”, Applications in Engineering Science, 6 (2021), 100050 | DOI
[57] Wua J., Huang Y., “Comprehensive implementations of phase-field damage models in Abaqus”, Theoretical and Applied Fracture Mechanics, 106 (2020), 102440 | DOI
[58] Mika P., “On interaction between damage growth and material stiffness in 3D structures”, Journal of Theoretical and Applied Mechanics, 37:4 (1999), 755–778 http://ptmts.org.pl/jtam/index.php/jtam/article/view/v37n4p755 | Zbl
[59] Mika P., “The comparison of scalar and tensorial damage measures”, ECCM-2001 : 2nd European Conference on Computational Mechanics : Solids, Structures and Coupled Problems in Engineering, under the auspices of ECCOMAS and IACM (Cracow, Poland, June 26–29, 2001)
[60] Mika P., “Influence of variable load on damage evolution in the plate structures”, CMM-2003 Computer methods in mechanics, Short papers, 2003, 253–254
[61] Mika P., “Influence of Exponent in Damage Evolution Equation on the Accuracy of Damage Modelling in Brittle Materials”, Engineering Transactions, 63:4 (2015), 463–479 http://et.ippt.gov.pl/index.php/et/article/download/245/239
[62] Izvekov O.Ya., Krupenik A.M., Solutions of coupled problems of continuum fracture of porous and poro-elastic media in SIMULIA ABAQUS
[63] Izvekov O.Ya., Krupenik A.M., Realization of energy model of continuum fracture of brittle media in SIMULIA ABAQUS 6.9
[64] Lee J.-H., Ryu D.-M., Lee C.-S., “Constitutive-damage modeling and computational implementation for simulation of elasto-viscoplastic-damage behavior of polymeric foams over a wide range of strain rates and temperatures”, International Journal of Plasticity, 130 (2020), 102712 | DOI
[65] Liu P.F., Li J.X., Wang S.B., Leng J.X., “Finite element analysis of viscoelastic creep behaviors of deep-sea manned submersible viewport windows”, International Journal of Pressure Vessels and Piping, 188 (2020), 104218 | DOI
[66] Xie Y. et al., “Influence of creep on preload relaxation of bolted composite joints: Modeling and numerical simulation”, Composite Structures, 245 (2020), 112332 | DOI
[67] Kachanov L.M., “On the fracture time under creep conditions”, Izv. AN SSSR. Otd-nie tekhn. nauk, 1958, 26–31 (In Russ.) | Zbl
[68] Dube M., Doquet V., Constantinescu A., George D., Remond Y., Ahzi S., “Modelling of thermal shock-induced damage in borosilicate glass”, Mechanics of Materials, 42:9 (2010), 863–872 | DOI
[69] Doquet V., Ben Ali N., Constantinescu A., Boutillon X., “Fracture of a borosilicate glass under triaxial tension”, Mechanics of Materials, 57 (2013), 15–29 | DOI
[70] Doquet V., Ben Ali N., Chabert E., Bouyer F., “Experimental and numerical study of crack healing in a nuclear glass”, Mechanics of Materials, 80 (2015), 145–162 | DOI
[71] Stepanova L.V., “Computational simulation of the damage accumulation processes in cracked solids by the user procedure UMAT of Simulia Abaqus”, PNRPU Mechanics Bulletin, 2018, no. 3, 71–86 (In Russ.) | DOI
[72] Turkova V.A., Stepanova L.V., “Evaluation of damage accumulation zone in the vicinity of the crack tip: FEM analysis via UMAT procedure”, Journal of Physics: Conference Series, 1096:1 (2018), 012157 | DOI
[73] Sun X., Khaleel M.A., “Modeling of glass fracture damage using continuum damage mechanics-static spherical indentation”, International Journal of Damage Mechanics, 13 (2004), 263–284 | DOI
[74] Sun X., Khaleel M.A., Davies R.W., “Modeling of stoneimpact resistance of monolithic glass ply using continuum damage mechanics”, International Journal of Damage Mechanics, 14 (2005), 165–178 | DOI
[75] Zhang S., Wang Q., Zhou W., “Implementation of the Tresca yield criterion in finite element analysis of burst capacity of pipelines”, International Journal of Pressure Vessels and Piping, 172 (2019), 180–187 | DOI
[76] Kodagali K., Progressive Failure Analysis of composite Materials using the Puck Failure Criteria, Doctoral dissertation, 2017, 77 pp. https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=5464&context=etd
[77] Shlyannikov V., Tumanov A., “Creep damage and stress intensity factor assessment for plane multi-axial and three-dimensional problems”, International Journal of Solids and Structures, 150 (2018), 166–183 | DOI
[78] Shlyannikov V.N., Tumanov A.V., “Force and deformation models of damage and fracture during creep”, Physical Mesomechanics, 21:3 (2018), 70–85 | DOI
[79] Sen S., Patel B.P., “Creep-Fatigue Interaction of Steam Turbine Rotors Using Continuum Damage Mechanics”, Transactions of the Indian Natiaonal Academy of Engineering, 2022 | DOI
[80] Compatible Fortran and Visual Studio for Abaqus, https://caeassistant.com/blog/compatible-fortran-visual-studio-for-abaqus
[81] USER MATERIAL IN ABAQUS, https://abaqus-docs.mit.edu/2017/English/SIMACAESUBRefMap/simasub-c-umat.htm
[82] Lecture 6 Writing a UMAT or VUMAT Overview, https://imechanica.org/files/Writing
[83] Okereke M., Keates S., Finite Element Applications, Springer, 2018, 418 pp. | DOI | MR | Zbl
[84] Ilin V.N., Mordashov S.V., Pusach S.V., “Laws of creep for computation of fire resistance for steel equipment”, Technology of technosphere safety, 2008, no. 6 (22), 10–17 (In Russ.)
[85] Boil G., Spens G., Stress Analysis for Creep, Mir, M., 1986, 360 pp. (In Russ.)
[86] Riedel H., Fracture at High Temperatures, Springer-Verlag, 1987, 418 pp. | DOI
[87] Meng Li., Chen W., Yan Y., Kitamura T., Feng. M., “Modelling of creep and plasticity deformation considering creep damage and kinematic hardening”, Engineering Fracture Mechanics, 218 (2019), 106582 | DOI