Keywords: slow invariant manifolds, critical travelling waves, singular, integral manifold, order reduction, asymptotic expansion, differential equations, slow variables.
@article{VSGU_2021_27_3_a2,
author = {V. A. Sobolev and E. A. Tropkina and E. A. Shchepakina and L. Zhang},
title = {Decomposition of traveling waves problems},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {22--30},
year = {2021},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a2/}
}
TY - JOUR AU - V. A. Sobolev AU - E. A. Tropkina AU - E. A. Shchepakina AU - L. Zhang TI - Decomposition of traveling waves problems JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2021 SP - 22 EP - 30 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a2/ LA - ru ID - VSGU_2021_27_3_a2 ER -
%0 Journal Article %A V. A. Sobolev %A E. A. Tropkina %A E. A. Shchepakina %A L. Zhang %T Decomposition of traveling waves problems %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2021 %P 22-30 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a2/ %G ru %F VSGU_2021_27_3_a2
V. A. Sobolev; E. A. Tropkina; E. A. Shchepakina; L. Zhang. Decomposition of traveling waves problems. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 22-30. http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a2/
[1] Murray J.D., Mathematical Biology, v. I, An Introduction, 3rd Ed., New York, 2003 https://booksee.org/book/1008392 | Zbl
[2] Murray J.D., Mathematical Biology, v. II, Spatial Models and Biomedical Applications, 3rd Ed., New York, 2003 http://pcleon.if.ufrgs.br/pub/listas-sistdin/MurrayII.pdf | Zbl
[3] Volpert A. I., Volpert Vitaly A., Volpert Vladimir A., Traveling Wave Solutions of Parabolic Systems, AMS, Providence, 1994, 453 pp. https://box.cs.istu.ru/public/docs/other/_Unsorted/new/books.pdox.net/Math/Traveling | MR
[4] Smoller J., Shock Waves and Reaction-Diffusion Equations, Springer Verlag, New York, 1983 | DOI | MR | Zbl
[5] Sobolev V.A., “Integral manifolds and decomposition of singularly perturbed systems”, System and Control Letters, 5 (1984), 169–179 | DOI | MR | Zbl
[6] Sobolev V.A., “Efficient decomposition of singularly perturbed systems”, Math. Model. Nat. Phenom., 14:4 (2019), 1–18 | DOI | MR
[7] Shchepakina E., Sobolev V., Mortell M.P., Singular Perturbations. Introduction to system order reduction methods with applications, Lecture Notes in Mathematics, 2114, Springer, Berlin–Heidelber–London, 2014 | DOI | MR | Zbl
[8] Sevčikova H., Kubiček M., Marek M., “Concentration waves — effects of an electric field”, Mathematical Modelling in Science and Technology, eds. X.J.R. Avula, R.E. Kalman, A.I. Liapis, E.Y. Rodin, Pergamon Press, New York, 1984, 477–482 | DOI | MR
[9] Shchepakina E., Tropkina E., “Order reduction for problems with traveling wave solutions to reaction-diffusion systems”, Journal of Physics: Conference Series, 1745:1 (2021), 012109 | DOI
[10] Schneider K., Shchepakina E., Sobolev V., “New type of travelling wave solutions”, Mathematical Methods in the Applied Sciences, 26:16 (2003), 1349–1361 | DOI | MR | Zbl
[11] Sobolev V., Schneider K., Shchepakina E., “Three types of non-adiabatic combustion waves in the case of autocatalytic reaction”, Russian Journal of Physical Chemistry B: Focus on Physics, 24:6 (2005), 63–69 (in Russian)
[12] Sobolev V.A., Shchepakina E.A., Model reduction and critical phenomena in macrokinetics, Fizmatlit, M., 2010, 320 pp. (in Russian)
[13] Härterich J., “Viscous Profiles of Traveling Waves in Scalar Balance Laws: The Canard Case”, Methods and Applications of Analysis, 10 (2003), 97–118 https://www.intlpress.com/site/pub/files/_fulltext/journals/maa/2003/0010/0001/MAA-2003-0010-0001-a006.pdf | DOI | MR
[14] Buřič L., Klíč A., Purmová L., “Canard solutions and travelling waves in the spruce budworm population model”, Applied Mathematics and Computation, 183 (2006), 1039–1051 | DOI | MR | Zbl