Decomposition of traveling waves problems
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 22-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article, the traveling waves problem for singularly perturbed systems of semilinear parabolic equations is considered. An effective method for the order reduction of singularly perturbed systems is proposed. The obtained mathematical results are used to study traveling waves both for abstract partial differential equations and for a specific model that can arise in physics problems, chemistry, and biology.
Mots-clés : singular perturbations, perturbations, fast variables
Keywords: slow invariant manifolds, critical travelling waves, singular, integral manifold, order reduction, asymptotic expansion, differential equations, slow variables.
@article{VSGU_2021_27_3_a2,
     author = {V. A. Sobolev and E. A. Tropkina and E. A. Shchepakina and L. Zhang},
     title = {Decomposition of traveling waves problems},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {22--30},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a2/}
}
TY  - JOUR
AU  - V. A. Sobolev
AU  - E. A. Tropkina
AU  - E. A. Shchepakina
AU  - L. Zhang
TI  - Decomposition of traveling waves problems
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 22
EP  - 30
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a2/
LA  - ru
ID  - VSGU_2021_27_3_a2
ER  - 
%0 Journal Article
%A V. A. Sobolev
%A E. A. Tropkina
%A E. A. Shchepakina
%A L. Zhang
%T Decomposition of traveling waves problems
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 22-30
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a2/
%G ru
%F VSGU_2021_27_3_a2
V. A. Sobolev; E. A. Tropkina; E. A. Shchepakina; L. Zhang. Decomposition of traveling waves problems. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 22-30. http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a2/

[1] Murray J.D., Mathematical Biology, v. I, An Introduction, 3rd Ed., New York, 2003 https://booksee.org/book/1008392 | Zbl

[2] Murray J.D., Mathematical Biology, v. II, Spatial Models and Biomedical Applications, 3rd Ed., New York, 2003 http://pcleon.if.ufrgs.br/pub/listas-sistdin/MurrayII.pdf | Zbl

[3] Volpert A. I., Volpert Vitaly A., Volpert Vladimir A., Traveling Wave Solutions of Parabolic Systems, AMS, Providence, 1994, 453 pp. https://box.cs.istu.ru/public/docs/other/_Unsorted/new/books.pdox.net/Math/Traveling | MR

[4] Smoller J., Shock Waves and Reaction-Diffusion Equations, Springer Verlag, New York, 1983 | DOI | MR | Zbl

[5] Sobolev V.A., “Integral manifolds and decomposition of singularly perturbed systems”, System and Control Letters, 5 (1984), 169–179 | DOI | MR | Zbl

[6] Sobolev V.A., “Efficient decomposition of singularly perturbed systems”, Math. Model. Nat. Phenom., 14:4 (2019), 1–18 | DOI | MR

[7] Shchepakina E., Sobolev V., Mortell M.P., Singular Perturbations. Introduction to system order reduction methods with applications, Lecture Notes in Mathematics, 2114, Springer, Berlin–Heidelber–London, 2014 | DOI | MR | Zbl

[8] Sevčikova H., Kubiček M., Marek M., “Concentration waves — effects of an electric field”, Mathematical Modelling in Science and Technology, eds. X.J.R. Avula, R.E. Kalman, A.I. Liapis, E.Y. Rodin, Pergamon Press, New York, 1984, 477–482 | DOI | MR

[9] Shchepakina E., Tropkina E., “Order reduction for problems with traveling wave solutions to reaction-diffusion systems”, Journal of Physics: Conference Series, 1745:1 (2021), 012109 | DOI

[10] Schneider K., Shchepakina E., Sobolev V., “New type of travelling wave solutions”, Mathematical Methods in the Applied Sciences, 26:16 (2003), 1349–1361 | DOI | MR | Zbl

[11] Sobolev V., Schneider K., Shchepakina E., “Three types of non-adiabatic combustion waves in the case of autocatalytic reaction”, Russian Journal of Physical Chemistry B: Focus on Physics, 24:6 (2005), 63–69 (in Russian)

[12] Sobolev V.A., Shchepakina E.A., Model reduction and critical phenomena in macrokinetics, Fizmatlit, M., 2010, 320 pp. (in Russian)

[13] Härterich J., “Viscous Profiles of Traveling Waves in Scalar Balance Laws: The Canard Case”, Methods and Applications of Analysis, 10 (2003), 97–118 https://www.intlpress.com/site/pub/files/_fulltext/journals/maa/2003/0010/0001/MAA-2003-0010-0001-a006.pdf | DOI | MR

[14] Buřič L., Klíč A., Purmová L., “Canard solutions and travelling waves in the spruce budworm population model”, Applied Mathematics and Computation, 183 (2006), 1039–1051 | DOI | MR | Zbl