Characteristic problem for a fourth-order equation with a dominant derivative
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 14-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we consider the Goursat problem for an equation with a dominating fourth-order mixed derivative and prove its unique solvability. The equation under consideration can be interpreted as a generalized Boussinesq — Love equation, which arises when describing longitudinal waves in a rod, taking into account transverse deformations. To justify the solvability, we proposed a method that is based on the possibility of reducing the problem posed to two Goursat problems for second-order equations. One of the problems is the classical Goursat problem for the simplest hyperbolic equation, while the other equation is loaded, and the study of the Goursat problem for it is the main result of the work.
Mots-clés : Boussinesq — Love equation, Goursat problem, existence of a solution
Keywords: system of two problems, equation with dominant derivative, loaded equation, method of successive approximations, uniqueness of a solution.
@article{VSGU_2021_27_3_a1,
     author = {A. V. Gilev and O. M. Kechina and L. S. Pulkina},
     title = {Characteristic problem for a fourth-order equation with a dominant derivative},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {14--21},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a1/}
}
TY  - JOUR
AU  - A. V. Gilev
AU  - O. M. Kechina
AU  - L. S. Pulkina
TI  - Characteristic problem for a fourth-order equation with a dominant derivative
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 14
EP  - 21
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a1/
LA  - ru
ID  - VSGU_2021_27_3_a1
ER  - 
%0 Journal Article
%A A. V. Gilev
%A O. M. Kechina
%A L. S. Pulkina
%T Characteristic problem for a fourth-order equation with a dominant derivative
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 14-21
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a1/
%G ru
%F VSGU_2021_27_3_a1
A. V. Gilev; O. M. Kechina; L. S. Pulkina. Characteristic problem for a fourth-order equation with a dominant derivative. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 14-21. http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a1/

[1] Bianchi L., “Sulla estensione del metodo di Riemann alle equazioni lineari alle derivate parziali d'ordine superiore”, Atti R. Accad. Lincei. Rend. Cl.Sc. fis.,mat. e natur, 4 (1895), 89–99

[2] Uizem G., Linear and non-linear waves, Mir, M., 1977, 622 pp. (In Russ.)

[3] Korpusov M.O., Destruction in nonclassical wave equations, URSS, M., 2010, 237 pp. (In Russ.)

[4] Kozhanov A.I., “An initial-boundary value problem for equations of the generalized Boussinesq equation type with a nonlinear source”, Mathematical Notes, 65:1 (1999), 59–63 (In Russ.) | DOI | DOI | MR | MR | Zbl

[5] Pulkina L.S., Beylin A.B., “Nonlocal approach to problems on longitudinal vibration in a short bar”, Electronic Journal of Differential Equations, 2019:29 (2019), 1–9 https://ejde.math.txstate.edu/Volumes/2019/29/pulkina.pdf | MR

[6] Yuldashev T.K., “On a boundary value problem for a three dimensional analog of the Boussinesq type differential equation”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158:3 (2016), 424–433 (In Russ.) | MR

[7] Namsaraeva G.V., “Linear inverse problems for some analogues of the Boussinesq equation”, Mathematical notes of NEFU, 21:2 (2014), 47–59 (In Russ.) | Zbl

[8] Mehraliyev Y.T., “On solvability of an inverse boundary problem for the Boussinesq-Love equation”, Journal of Siberian Federal University. Mathematics and Physics, 6:4 (2013), 485–494 http://elib.sfu-kras.ru/bitstream/handle/2311/10080/

[9] Pul'kina L.S., “A problem with dynamic nonlocal condition for pseudohyperbolic equation”, Russian Mathematics, 60:9 (2016), 38–45 | DOI | MR | Zbl

[10] Beylin A.B., Pulkina L.S., “A problem on longitudinal vibration in a short bar with dynamical boundary conditions”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 23:4 (2017), 7–18 (In Russ.) | DOI | MR | Zbl

[11] Zhegalov V.I., “On a problem for generalized Boussinesq-Love equation”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 23:4 (2019), 771–776 (In Russ.) | DOI | Zbl

[12] Attaev A.H., “The characteristic problem for the second-order hyperbolic equation loaded along one of its characteristics”, Bulletin KRASEC. Physical and Mathematical Sciences, 2018, no. 3(23), 14–18 (In Russ.) | DOI | MR | Zbl

[13] Andreev A.A., Yakovleva J.O., “The Goursat-type problem for a hyperbolic equation and system of third order hyperbolic equations”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 23:1 (2019), 186–194 (In Russ.) | DOI | Zbl

[14] Mironov A.N., Mironova L.B., Yakovleva Yu.O., “The Riemann method for equations with a dominant partial derivative (A Review)”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 25:2 (2021), 207–240 (In Russ.) | DOI | Zbl

[15] Midodashvili B., “A nonlocal problem for fourth order hyperbolic equations with multiple characteristics”, Electronic Journal of Differential Equations, 2002:85 (2002), 1–7 https://emis.univie.ac.at//journals/EJDE/Volumes/2002/85/midodashvili.pdf | MR

[16] Zhegalov V.I., Utkina E.A., Shakirova I.M., “On conditions of solvability of the Goursat problem for generalized Aller equation”, Russian Mathematics (Izvestiya VUZ. Matematika), 62:8 (2018), 17–21 | DOI | MR | Zbl

[17] Nakhushev A.M., Problems with displacement for partial differential equations, Nauka, M., 2006, 287 pp. (In Russ.)

[18] Ketchina O.M., “On solvability of nonlocal problem for third-order equation”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 23:1 (2017), 15–20 (In Russ.) | MR

[19] Gilev A.V., “A nonlocal problem for a hyperbolic equation with a dominant mixed derivative”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 26:4 (2020), 25–35 (In Russ.) | DOI | MR | Zbl

[20] Sobolev S.L., Equations of mathematical physics, Nauka, M., 1966, 444 pp. (In Russ.)