Keywords: system of two problems, equation with dominant derivative, loaded equation, method of successive approximations, uniqueness of a solution.
@article{VSGU_2021_27_3_a1,
author = {A. V. Gilev and O. M. Kechina and L. S. Pulkina},
title = {Characteristic problem for a fourth-order equation with a dominant derivative},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {14--21},
year = {2021},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a1/}
}
TY - JOUR AU - A. V. Gilev AU - O. M. Kechina AU - L. S. Pulkina TI - Characteristic problem for a fourth-order equation with a dominant derivative JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2021 SP - 14 EP - 21 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a1/ LA - ru ID - VSGU_2021_27_3_a1 ER -
%0 Journal Article %A A. V. Gilev %A O. M. Kechina %A L. S. Pulkina %T Characteristic problem for a fourth-order equation with a dominant derivative %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2021 %P 14-21 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a1/ %G ru %F VSGU_2021_27_3_a1
A. V. Gilev; O. M. Kechina; L. S. Pulkina. Characteristic problem for a fourth-order equation with a dominant derivative. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 14-21. http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a1/
[1] Bianchi L., “Sulla estensione del metodo di Riemann alle equazioni lineari alle derivate parziali d'ordine superiore”, Atti R. Accad. Lincei. Rend. Cl.Sc. fis.,mat. e natur, 4 (1895), 89–99
[2] Uizem G., Linear and non-linear waves, Mir, M., 1977, 622 pp. (In Russ.)
[3] Korpusov M.O., Destruction in nonclassical wave equations, URSS, M., 2010, 237 pp. (In Russ.)
[4] Kozhanov A.I., “An initial-boundary value problem for equations of the generalized Boussinesq equation type with a nonlinear source”, Mathematical Notes, 65:1 (1999), 59–63 (In Russ.) | DOI | DOI | MR | MR | Zbl
[5] Pulkina L.S., Beylin A.B., “Nonlocal approach to problems on longitudinal vibration in a short bar”, Electronic Journal of Differential Equations, 2019:29 (2019), 1–9 https://ejde.math.txstate.edu/Volumes/2019/29/pulkina.pdf | MR
[6] Yuldashev T.K., “On a boundary value problem for a three dimensional analog of the Boussinesq type differential equation”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158:3 (2016), 424–433 (In Russ.) | MR
[7] Namsaraeva G.V., “Linear inverse problems for some analogues of the Boussinesq equation”, Mathematical notes of NEFU, 21:2 (2014), 47–59 (In Russ.) | Zbl
[8] Mehraliyev Y.T., “On solvability of an inverse boundary problem for the Boussinesq-Love equation”, Journal of Siberian Federal University. Mathematics and Physics, 6:4 (2013), 485–494 http://elib.sfu-kras.ru/bitstream/handle/2311/10080/
[9] Pul'kina L.S., “A problem with dynamic nonlocal condition for pseudohyperbolic equation”, Russian Mathematics, 60:9 (2016), 38–45 | DOI | MR | Zbl
[10] Beylin A.B., Pulkina L.S., “A problem on longitudinal vibration in a short bar with dynamical boundary conditions”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 23:4 (2017), 7–18 (In Russ.) | DOI | MR | Zbl
[11] Zhegalov V.I., “On a problem for generalized Boussinesq-Love equation”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 23:4 (2019), 771–776 (In Russ.) | DOI | Zbl
[12] Attaev A.H., “The characteristic problem for the second-order hyperbolic equation loaded along one of its characteristics”, Bulletin KRASEC. Physical and Mathematical Sciences, 2018, no. 3(23), 14–18 (In Russ.) | DOI | MR | Zbl
[13] Andreev A.A., Yakovleva J.O., “The Goursat-type problem for a hyperbolic equation and system of third order hyperbolic equations”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 23:1 (2019), 186–194 (In Russ.) | DOI | Zbl
[14] Mironov A.N., Mironova L.B., Yakovleva Yu.O., “The Riemann method for equations with a dominant partial derivative (A Review)”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 25:2 (2021), 207–240 (In Russ.) | DOI | Zbl
[15] Midodashvili B., “A nonlocal problem for fourth order hyperbolic equations with multiple characteristics”, Electronic Journal of Differential Equations, 2002:85 (2002), 1–7 https://emis.univie.ac.at//journals/EJDE/Volumes/2002/85/midodashvili.pdf | MR
[16] Zhegalov V.I., Utkina E.A., Shakirova I.M., “On conditions of solvability of the Goursat problem for generalized Aller equation”, Russian Mathematics (Izvestiya VUZ. Matematika), 62:8 (2018), 17–21 | DOI | MR | Zbl
[17] Nakhushev A.M., Problems with displacement for partial differential equations, Nauka, M., 2006, 287 pp. (In Russ.)
[18] Ketchina O.M., “On solvability of nonlocal problem for third-order equation”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 23:1 (2017), 15–20 (In Russ.) | MR
[19] Gilev A.V., “A nonlocal problem for a hyperbolic equation with a dominant mixed derivative”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 26:4 (2020), 25–35 (In Russ.) | DOI | MR | Zbl
[20] Sobolev S.L., Equations of mathematical physics, Nauka, M., 1966, 444 pp. (In Russ.)