Well-posedness of the main mixed problem for the multidimensional lavrentiev — bitsadze equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 7-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that the oscillations of elastic membranes in space are modelled with partial differential equations. If the deflection of the membrane is considered as a function of $u (x,t), x=(x_{1},..., x_{m}), m\geq2,$ then, according to the Hamilton principle, we arrive to a multidimensional wave equation. Assuming that the membrane is in equilibrium in the bending position, we also obtain the multidimensional Laplace equation from the Hamilton's principle. Consequently, the oscillations of elastic membranes in space can be modelled with a multidimensional Lavrentiev — Bitsadze equation. The main mixed problem in the cylindrical domain for multidimensional hyperbolic equations in the space of generalized functions is well studied. In the works of the author, the well-posedness of this problem for multidimensional hyperbolic and elliptic equations is proved, and the explicit forms of classical solutions are obtained. As far as we know, these questions for multidimensional hyperbolic-elliptic equations have not been studied. The mixed problem with boundary-value conditions for the multidimensional Lavrentiev — Bitsazde equation is ill-posed. In this paper, we prove the unique solvability and obtain an explicit form of classical solution of the main mixed problem with boundary and initial conditions for the multidimensional Lavrentiev — Bitsadze equation.
Keywords: well-posedness, main mixed problem, cylindrical domain, Bessel function.
@article{VSGU_2021_27_3_a0,
     author = {S. A. Aldashev},
     title = {Well-posedness of the main mixed problem for the multidimensional lavrentiev~{\textemdash} bitsadze equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--13},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a0/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - Well-posedness of the main mixed problem for the multidimensional lavrentiev — bitsadze equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 7
EP  - 13
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a0/
LA  - ru
ID  - VSGU_2021_27_3_a0
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T Well-posedness of the main mixed problem for the multidimensional lavrentiev — bitsadze equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 7-13
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a0/
%G ru
%F VSGU_2021_27_3_a0
S. A. Aldashev. Well-posedness of the main mixed problem for the multidimensional lavrentiev — bitsadze equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 3, pp. 7-13. http://geodesic.mathdoc.fr/item/VSGU_2021_27_3_a0/

[1] Ladyzhenskaya O.A., A mixed problem for a hyperbolic equation, Gostekhizdat, M., 1953, 279 pp. (In Russ.) | MR

[2] Ladyzhenskaya O.A., Boundary value problems of mathematical physics, Nauka, M., 1973, 407 pp. (In Russ.)

[3] Krasnov M.L., “Mixed boundary problems for degenerate linear hyperbolic differential equations second order”, Mat. sb., 49(91) (1959), 29–84 (In Russ.) | Zbl

[4] Baranovsky F.T., “A mixed problem for a linear hyperbolic equation”, Uchenye zapiski Leningr. ped. ins-ta, 183 (1958), 23–58 (In Russ.)

[5] Aldashev S.A., “Correctness of a mixed problem for multidimensional hyperbolic equations with a wave operator”, Ukrainian Mathematical Journal, 69:7 (2017), 992–999 (In Russ.) | MR | Zbl

[6] Aldashev S.A., “Well-Posedness of mixed problems for multidimensional hyperbolic equations with wave operator”, Ukrainian Mathematical Journal, 69:7 (2017), 1154–1163 | DOI | MR | Zbl

[7] Aldashev S.A., “Well-Posedness of the mixed problems for generate multidimensional hyperbolic equations”, Materials of the conference “Modern Problems of Mathematical Modeling, Computational methods and Information”, KNU im. T. Shevchenko, Kyiv, 2018, 14–15 (In Russ.)

[8] Aldashev S.A., “Correctness of a mixed problem for one class of degenerate multidimensional hyperbolic equations”, Zhurnal “Vychislitel'noi i prikladnoi matematiki”, 2019, no. 2(131), 5–14 (In Russ.) | MR

[9] Aldashev S.A., Kanapyanova Z.N., “Correctness of a mixed problem for degenerate three-dimensional hyperbolic equations”, Materials of the All-Russian conference “Control Theory and Mathematic Modeling”, Udm. gos. un-t, Izhevsk, 2020, 24–26 (In Russ.)

[10] Aldashev S.A., Kanapyanova Z.N., “Mixed problem for three-dimensional hyperbolic equations with type and order degeneracy”, News of the National Academy of Sciences of the Republic of Kazakhstan. Physical–Mathematical Series, 2020, no. 6(334), 13–18 (In Russ.)

[11] Aldashev S.A., “Correctness of a mixed problem for one class of degenerate multidimensional elliptic equations”, Belgorod State University Scientific Bulletin. Mathematics Physics, 51:2 (2019), 174–182 (In Russ.)

[12] Bitsadze A.V., Some classes of partial differential equations, Nauka, M., 1981, 448 pp. (In Russ.) | MR

[13] Mikhlin S.G., Multidimensional singular integrals and integral equations, Fizmatgiz, M., 1962, 254 pp. (In Russ.)

[14] Kamke E., Handbook of Ordinary Differential Equations, Nauka, M., 1965, 703 pp. (In Russ.)

[15] Bateman G., Erdeyi A., Higher transcendental functions, v. 1, Nauka, M., 1973, 292 pp. (In Russ.)

[16] Tikhonov A.N., Samarsky A.A., Equations of mathematical physics, Nauka, M., 1966, 724 pp. (In Russ.) | MR