Mots-clés : invasion, bifurcations and cycles
@article{VSGU_2021_27_2_a7,
author = {A. Yu. Perevaryukha},
title = {Scenarios model of the effect of a temporary sharp reduction of population with a large reproductive parameter},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {80--90},
year = {2021},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a7/}
}
TY - JOUR AU - A. Yu. Perevaryukha TI - Scenarios model of the effect of a temporary sharp reduction of population with a large reproductive parameter JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2021 SP - 80 EP - 90 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a7/ LA - ru ID - VSGU_2021_27_2_a7 ER -
%0 Journal Article %A A. Yu. Perevaryukha %T Scenarios model of the effect of a temporary sharp reduction of population with a large reproductive parameter %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2021 %P 80-90 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a7/ %G ru %F VSGU_2021_27_2_a7
A. Yu. Perevaryukha. Scenarios model of the effect of a temporary sharp reduction of population with a large reproductive parameter. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 2, pp. 80-90. http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a7/
[1] Carlton T., “The Zebra Mussel Dreissena polymorpha Found in North America in 1986 and 1987”, Journal of Great Lakes Research, 34:4 (2008), 770–773 | DOI
[2] Perevaryukha A.Yu., “Modeling fluctuations of invasive alien species in continuous models with independent regulation”, Vestnik of Samara University. Natural Science Series, 24:4 (2018), 49–59 (In Russ.) | DOI | MR
[3] Perevaryukha A.Yu., “Nonlinear model of overfishing for the Volga sturgeon based on cognitive graph of interaction of environmental factors”, Vestnik of Samara University. Natural Science Series, 2016, no. 1–2, 92–106 (In Russ.)
[4] Perevaryukha A.Yu., “Modeling the growth rates of alien insects specified differentiated by stages of ontogenesis”, Vestnik of Samara University. Natural Science Series, 25:2 (2019), 100–109 (In Russ.) | DOI | MR
[5] Rasmussen A., “Relaxation oscillations in spruce-budworm interactions”, Nonlinear Analysis: Real World Applications, 12:1 (2011), 304–319 | DOI | MR | Zbl
[6] Perevaryukha A.Yu., “Graph model of interaction of anthropogenic and biotic factors for the productivity of the Caspian Sea”, Vestnik of Samara University. Natural Science Series, 2015, no. 10 (132), 181–198 (In Russ.) https://journals.ssau.ru/est/article/view/4460
[7] Hutchinson G. E., “Circular cause systems in ecology”, Ann. N. Y. Acad. Sci., 50 (1948), 221–246 | DOI
[8] Kaschenko S. A., Loginov D. O., “About global stable of solutions of logistic equation with delay”, Journal of Physics: Conf. Series, 937 (2017), 120–139 | DOI | MR
[9] Hutchinson G. E., An Introduction to Population Ecology, Yale University Press, New Haven, 1978, 125 pp. | DOI | MR | Zbl
[10] Arino J., “An alternative formulation for a delayed logistic equation”, Journal of Theoretical Biology, 241 (2006), 109–119 | DOI | MR | Zbl
[11] Gopalsamy K., “Global stability in the Delay-Logistic Equation with discrete delays”, Houston Journal of Mathematics, 16:3 (1990), 347–356 https://math.uh.edu/h̃jm/restricted/archive/v016n3/0347GOPALSAMY.pdf | MR | Zbl
[12] Ruan S., “Delay Differential Equations in Single Species Dynamics”, Delay Differential Equations and Applications, Springer, Berlin, 2006, 477–517 | DOI | MR
[13] Hale J., “Persistence in infinite dimensional systems”, SIAM Journal on Mathematical Analysis, 20 (1989), 388–395 | DOI | MR | Zbl
[14] Glyzin D. S., Kashchenko S. A., Polstyanov A. S., “Spatially inhomogeneous periodic solutions of the Hutchinson equation with distributed saturation”, Modeling and analysis of information systems, 7 (2011), 37–45 https://www.mais-journal.ru/jour/article/view/1074
[15] Kolesov A. Y., Mishchenko E. F., Rozov N. K., “A modification of Hutchinson's equation”, Computational Mathematics and Mathematical Physics, 50 (2010), 1990–2002 | DOI | MR | Zbl
[16] Bazykin A. D., “Theoretical and mathematical ecology: dangerous boundaries and criteria of approash them”, Mathematics and Modelling, eds. A. Bazykin, Yu. Zarkhin, Nova Sci. Publishers, Inc, 1993, 321–328 | MR
[17] Neave F., “Principles affecting the size of pink and chum salmon populations in British Columbia”, J. Fish. Res. Board Can., 9 (1953), 450–491 | DOI
[18] Gause G. F., The Struggle for Existence, Baltimore, 1934 | DOI
[19] Frolov A. N., “The beet webworm Loxostege sticticalis l. (Lepidoptera, Crambidae) in the focus of agricultural entomology objectives: The periodicity of pest outbreaks”, Entomological Review, 2015, no. 2, 147–156 | DOI
[20] Borisova T.Yu., “Problematic aspects of modeling population processes and criteria for their agreement”, Mathematical machines and systems, 2017, no. 1, 71–81 (In Russ.)
[21] Dubrovskaya V. A. On validity criteria for the analysis of nonlinear effects in models of exploited populations, Problems of Mechanics and Control, 48 (2016), 74–83 (In Russ.)
[22] Bertalanffy L., “Quantitative laws in metabolism and growth”, The Quarterly Review Of Biology, 32:3 (1957), 217–231 | DOI