Influence of curvature of the crack tip radius on stresses
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 2, pp. 62-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In experimental mechanics, when conducting research on models, the question often arises of whether it is legitimate to replace a crack with a cut, whether the radius of curvature of the cut will have a large effect on the magnitude of stresses near its apex. In order to understand these questions and give answers to them, a number of experiments were carried out on samples made of piezo-optical material (Plexiglass of E2 grade). In the models, the crack was simulated using a cut, then a hole was made at the top of the cut with a drill. The models were investigated in pure bending by the photoelasticity method. Stress fields were obtained in two batches of samples at different loads. The intensity of stresses near cracks-cuts at different radius of curvature of their tops was determined by using the experimental data. An assessment of the influence of the crack-cut tip radius curvature on the magnitude of stresses near it has been carried out.
Keywords: experimental mechanics, models, cracks, photo-elasticity method, stress state, stress concentrators, cuts, stress fields, piezo-optical material.
@article{VSGU_2021_27_2_a5,
     author = {Y. A. Gerber and A. E. Nagel and M. V. Tabanyukhova},
     title = {Influence of curvature of the crack tip radius on stresses},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {62--69},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a5/}
}
TY  - JOUR
AU  - Y. A. Gerber
AU  - A. E. Nagel
AU  - M. V. Tabanyukhova
TI  - Influence of curvature of the crack tip radius on stresses
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 62
EP  - 69
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a5/
LA  - ru
ID  - VSGU_2021_27_2_a5
ER  - 
%0 Journal Article
%A Y. A. Gerber
%A A. E. Nagel
%A M. V. Tabanyukhova
%T Influence of curvature of the crack tip radius on stresses
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 62-69
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a5/
%G ru
%F VSGU_2021_27_2_a5
Y. A. Gerber; A. E. Nagel; M. V. Tabanyukhova. Influence of curvature of the crack tip radius on stresses. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 2, pp. 62-69. http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a5/

[1] Tabanyukhova M. V., Solving problems of strength of elements of structures with concentrators by the method of photoelasticity, specialty 05.23.17 ‘`Construction mechanics": Candidate’s of Technical Sciences thesis, Novosibirsk, 2006, 145 pp. (In Russ.)

[2] Albaut G. N., Kanyshev Yu.I., Tabanyukhova M. V., “Photoelastic analysis of the stressed state of beams with cracks”, Problems of optimal design of structures, Documents of the 2nd All-Russian conference (Novosibirsk, April 05–06, 2011), Novosibirskii gosudarstvennyi arkhitekturno-stroitel'nyi universitet (Sibstrin), Novosibirsk, 2011, 28–35 (In Russ.)

[3] Zerkal S. M., Tabanyukhova M. V., “Photoelastic analysis of stress concentration near the vertices of the cracks-cuts”, Innovations in Life, 2019, no. 2 (29), 126–133 (In Russ.)

[4] Tabanyukhova M. V. Investigation of stress-strain state in beams with reinforcing carboplastic layer, Mechanics of composite materials and structures, 18:2 (2012), 248–254 (In Russ.)

[5] Albaut G. N., Baryshnikov V. N., Pangaev V. V., Tabanyukhova M. V., Kharinova N. V., “Determination of stress concentration factors in nonstandard problems by polarization-optical methods”, Physical Mesomechanics, 6:6 (2003), 91–95 (In Russ.)

[6] Tabanyukhova M. V., Pangaev V. V., “Photoelastic analysis of mode I stress intensity factor in beams with angular notches”, Fracture of Nano and Engineering Materials and Structures, Proceedings of the 16th European Conference of Fracture (16, Alexandroupolis, 03–07 july's 2006 years), Alexandroupolis, 2006, 447–448 | DOI

[7] Albaut G. N., Tabanyukhova M. V., Morozov N. F., Proskura A. V., Yastrebkova N. A., “Influence of a round hole on the stress-strain state at the crack tip”, News of higher educational institutions. Construction, 2000, no. 9(501), 143–145 (In Russ.)

[8] Tabanyukhova M. V., “Stress reduction in beams in the presence of defects”, Defects of buildings and structures. Strengthening of building structures, materials of the XIV scientific and methodological conference (VITU, St. Petersburg, March 18 2010), Voennyi inzhenerno-tekhnicheskii universitet, Saint Petersburg, 2010, 104–108 (In Russ.)

[9] Stepanova L. V., Belova O. N., Turkova V. A., “Determination of the Williams series expansion's coefficients using digital photoelasticity method and finite element method”, Vestnik of Samara University. Natural Science Series, 25:3 (2019), 62–82 (In Russ.) | DOI | MR

[10] Stepanova L. V., Frolov K. V., “Finite element study of mixed mode loading of the cracked semicircular disc under bending”, PNRPU Mechanics Bulletin, 2018, no. 3, 128–137 (In Russ.) | DOI

[11] Albaut G. N., Proskura A. V., Tabanyukhova M. V., Yastebkova N. A., “Stress changes at the crack tops due to the presence of round pores in its vicinity”, Scientific papers of the II and III International congress “Resource and energy conservation in reconstruction and new construction”, Novosibirskii gosudarstvennyi arkhitekturno-stroitel'nyi universitet (Sibstrin), Novosibirsk, 2000, 25–30 (In Russ.)

[12] Albaut G. N., Tabanyukhova M. V., “Model determination of pressures concentration in elements of building structures with angle cuttings out”, News of higher educational institutions. Construction, 2006, no. 10 (574), 107–112 (In Russ.)

[13] Tabanyukhova M. V., “Photoelastic analysis of the stressed state of a flat element with geometrical stress concentrators (Cutout and cuts)”, Key Engineering Materials, 827 KEM (2020), 330–335 | DOI

[14] Alexandrov A. Y., Akhmetzyanov M. H., Polarization-optical methods of mechanics of a deformable body, Nauka, M., 1973, 576 pp. (In Russ.)