@article{VSGU_2021_27_2_a4,
author = {P. G. Velikanov and D. M. Khalitova},
title = {Solutions of boundary value problems for anisotropic plates and shelles by boundary elements method},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {48--61},
year = {2021},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a4/}
}
TY - JOUR AU - P. G. Velikanov AU - D. M. Khalitova TI - Solutions of boundary value problems for anisotropic plates and shelles by boundary elements method JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2021 SP - 48 EP - 61 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a4/ LA - ru ID - VSGU_2021_27_2_a4 ER -
%0 Journal Article %A P. G. Velikanov %A D. M. Khalitova %T Solutions of boundary value problems for anisotropic plates and shelles by boundary elements method %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2021 %P 48-61 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a4/ %G ru %F VSGU_2021_27_2_a4
P. G. Velikanov; D. M. Khalitova. Solutions of boundary value problems for anisotropic plates and shelles by boundary elements method. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 2, pp. 48-61. http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a4/
[1] Galimov K. Z., Fundamentals of the nonlinear theory of thin shells, Izd-vo Kazanskogo un-ta, Kazan, 1975, 326 pp. (In Russ.)
[2] Volmir A. S., Nonlinear dynamics of plates and shells, Nauka, M., 1972, 432 pp. (In Russ.)
[3] Lekhnitsky S. G., Anisotropic plates, OGIZ-Gostekhizdat, M., 1947, 355 pp. (In Russ.) | MR
[4] Kornishin M. S., Nonlinear problems of the plates and shallow shells theory and methods of their solution, Nauka, M., 1964, 192 pp. (In Russ.)
[5] Hörmander L., The Analysis of Linear Partial Differential Operators, v. I, Distribution Theory and Fourier Analysis, Mir, M., 1986, 464 pp. (In Russ.) http://www.bookre.org/reader?file=442772
[6] Shanz M., Antes H., “A Boundary Integral Formulation for the Dynamic Behavior of a Timoshenko Beam”, Electronic Journal of Boundary Elements, BETEQ:3 (2001), 348–359 https://www.researchgate.net/publication/228746551_A_boundary_integral_formulation_for_the_dynamic_behavior_of_a_Timoshenko_beam | MR
[7] Wu B.C., Altiero N. J., “A new numerical method for the analysis of anisotropic thin plate bending problems”, Computer Methods in Applied Mechanics and Engineering, 25:3 (1981), 343–353 | DOI | MR | Zbl
[8] Shi G., Bezine G., “A general boundary integral formulation for the anisotropic plate bending problems”, Journal of Composite Materials, 22:8 (1988), 694–716 | DOI
[9] Albuquerque E. L., Sollero P., Venturini W. S., Aliabadi M. H., “Boundary element analysis of anisotropic Kirchhoff plates”, International Journal of Solids and Structures, 43:14–15 (2006), 4029–4046 | DOI | Zbl
[10] Guryanov I. N., Artyukhin Yu.P., Fundamental solution of the plane problem and the bending plates problem of an anisotropic body, KGU, Kazan, 1994, 33 pp. (In Russ.)
[11] Levada V. S., “Construction of a fundamental solution for the bending an anisotropic plate problem”, Pridneprovskii nauchnyi vestnik, 1996, no. 4, 8 pp. (In Russ.)
[12] Velikanov P. G., Artyukhin Yu.P., Kukanov N. I., “Bending of an anisotropic plate by the method of boundary elements”, Actual problems of continuum mechanics-2020, 2020, 105–111 (In Russ.)
[13] Artyukhin Yu.P., Gribov A. P., Solving problems of nonlinear deformation of plates and shallow shells by the method of boundary elements, Fen, Kazan, 2002, 199 pp. (In Russ.) | MR
[14] Gribov A. P., Velikanov P. G., “Application of the Fourier transformation to obtain a fundamental solution to the bending an orthotropic plate problem”, Proceedings of the All-Russian Scientific Conference (26–28 May, 2004), v. 3, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2004, 67–71 (In Russ.)
[15] Crouch S. I., Starfield S., Boundary element in solid mechanics, Mir, M., 1987, 328 pp. (In Russ.)
[16] Vorovich I. N., Mathematical problems of the nonlinear theory of shallow shells, Nauka, M., 1989, 376 pp. (In Russ.) | MR
[17] Grigolyuk E. I., Shalashilin V. I., Problems of nonlinear deformation, Nauka, M., 1988, 232 pp. (In Russ.)
[18] Rvachev V. L., Kurpa L. V., Khomenko M. M., Bolotina A. Yu., “Application of the theory of R-functions to the calculation of flexible orthotropic flat shells of complex shape in plan”, Proceedings of the XV All-Union Conference on the Theory of Shells and Plates, v. 1, Izdatel'stvo Kazanskogo universiteta, Kazan, 1990, 342–347 (In Russ.)
[19] Chia C. Y., Nonlinear analysis of plates, Mc. Graw-Hill intern, NY etc., 1980, xiv+422 pp.