Use of the indirect boundary elements method for isotropic plates on an elastic Winkler base and Pasternak — Vlasov base
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 2, pp. 33-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The calculation tasks combining lightness, economy, high strength and reliability of thin-walled structures on an elastic base are relevant for modern mechanical engineering. In this regard, the use of isotropic materials on an elastic base seems justified, therefore their calculation is considered in this article. The problems of the theory of plates and shells belong to the class of boundary value problems, the analytical solution of which, due to various circumstances (the nonlinearity of differential equations, the complexity of geometry and boundary conditions, etc.), cannot be determined. Numerical methods help to solve this problem. Among numerical methods, undeservedly little attention is paid to the boundary element method. In this regard, the further development of indirect compensating loads method for solving problems of the theory of isotropic plates on an elastic base of Winkler and Pasternak — Vlasov, based on the application of exact fundamental solutions, is relevant.
Keywords: mechanics, mathematics, differential equations, plates on an elastic base of Winkler and Pasternak — Vlasov, fundamental solutions, influence functions, indirect boundary elements method, compensating loads method.
@article{VSGU_2021_27_2_a3,
     author = {P. G. Velikanov and N. I. Kukanov and D. M. Khalitova},
     title = {Use of the indirect boundary elements method for isotropic plates on an elastic {Winkler} base {and~Pasternak~{\textemdash}} {Vlasov} base},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {33--47},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a3/}
}
TY  - JOUR
AU  - P. G. Velikanov
AU  - N. I. Kukanov
AU  - D. M. Khalitova
TI  - Use of the indirect boundary elements method for isotropic plates on an elastic Winkler base and Pasternak — Vlasov base
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 33
EP  - 47
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a3/
LA  - ru
ID  - VSGU_2021_27_2_a3
ER  - 
%0 Journal Article
%A P. G. Velikanov
%A N. I. Kukanov
%A D. M. Khalitova
%T Use of the indirect boundary elements method for isotropic plates on an elastic Winkler base and Pasternak — Vlasov base
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 33-47
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a3/
%G ru
%F VSGU_2021_27_2_a3
P. G. Velikanov; N. I. Kukanov; D. M. Khalitova. Use of the indirect boundary elements method for isotropic plates on an elastic Winkler base and Pasternak — Vlasov base. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 2, pp. 33-47. http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a3/

[1] Velikanov P. G., “Investigation of the isotropic plates bending lying on the complex two-parameter elastic foundation by boundary element method”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 8:1 (2008), 36–42 (In Russ.) | DOI

[2] Kukanov N. I., Velikanov P. G., “Temperature bending of single-connected and multi-connected isotropic plates by the indirect boundary elements method”, Actual problems of modern science, proceedings of the 2nd International forum. Natural sciences, v. 1–3, Izd-vo SGTU, Samara, 2006, 178–183 (In Russ.)

[3] Velikanov P. G., Kukanov N. I., Khalitova D. M., “Nonlinear deformation of a cylindrical panel of step-variable stiffness on an elastic base by the method of boundary elements”, Actual problems of continuum mechanics-2020, OOO “Print”, Izhevsk, 2020, 111–115 (In Russ.) https://kpfu.ru/portal/docs/F600474390/apcm_2020.pdf

[4] Artyukhin Yu.P., Gribov A. P., Solving of nonlinear deformation problems of plates and shallow shells by the boundary elements method, Fen, Kazan, 2002, 199 pp. (In Russ.) | MR

[5] Shevchenko V. P., Integral transformations in the theory of plates and shells, Donetskii gosudarstvennyi universitet, Donetsk, 1977, 115 pp. (In Russ.)

[6] Korenev B. G., Some problems of the theory of elasticity and thermal conductivity solved in Bessel functions, Fizmatgiz, M., 1960, 458 pp. (In Russ.)

[7] Panich O. I., “Potentials for polyharmonic equations of the fourth order”, Matematicheskii Sbornik. Novaya Seriya, 50(92):3 (1960), 335–354 (In Russ.)