@article{VSGU_2021_27_2_a3,
author = {P. G. Velikanov and N. I. Kukanov and D. M. Khalitova},
title = {Use of the indirect boundary elements method for isotropic plates on an elastic {Winkler} base {and~Pasternak~{\textemdash}} {Vlasov} base},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {33--47},
year = {2021},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a3/}
}
TY - JOUR AU - P. G. Velikanov AU - N. I. Kukanov AU - D. M. Khalitova TI - Use of the indirect boundary elements method for isotropic plates on an elastic Winkler base and Pasternak — Vlasov base JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2021 SP - 33 EP - 47 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a3/ LA - ru ID - VSGU_2021_27_2_a3 ER -
%0 Journal Article %A P. G. Velikanov %A N. I. Kukanov %A D. M. Khalitova %T Use of the indirect boundary elements method for isotropic plates on an elastic Winkler base and Pasternak — Vlasov base %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2021 %P 33-47 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a3/ %G ru %F VSGU_2021_27_2_a3
P. G. Velikanov; N. I. Kukanov; D. M. Khalitova. Use of the indirect boundary elements method for isotropic plates on an elastic Winkler base and Pasternak — Vlasov base. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 2, pp. 33-47. http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a3/
[1] Velikanov P. G., “Investigation of the isotropic plates bending lying on the complex two-parameter elastic foundation by boundary element method”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 8:1 (2008), 36–42 (In Russ.) | DOI
[2] Kukanov N. I., Velikanov P. G., “Temperature bending of single-connected and multi-connected isotropic plates by the indirect boundary elements method”, Actual problems of modern science, proceedings of the 2nd International forum. Natural sciences, v. 1–3, Izd-vo SGTU, Samara, 2006, 178–183 (In Russ.)
[3] Velikanov P. G., Kukanov N. I., Khalitova D. M., “Nonlinear deformation of a cylindrical panel of step-variable stiffness on an elastic base by the method of boundary elements”, Actual problems of continuum mechanics-2020, OOO “Print”, Izhevsk, 2020, 111–115 (In Russ.) https://kpfu.ru/portal/docs/F600474390/apcm_2020.pdf
[4] Artyukhin Yu.P., Gribov A. P., Solving of nonlinear deformation problems of plates and shallow shells by the boundary elements method, Fen, Kazan, 2002, 199 pp. (In Russ.) | MR
[5] Shevchenko V. P., Integral transformations in the theory of plates and shells, Donetskii gosudarstvennyi universitet, Donetsk, 1977, 115 pp. (In Russ.)
[6] Korenev B. G., Some problems of the theory of elasticity and thermal conductivity solved in Bessel functions, Fizmatgiz, M., 1960, 458 pp. (In Russ.)
[7] Panich O. I., “Potentials for polyharmonic equations of the fourth order”, Matematicheskii Sbornik. Novaya Seriya, 50(92):3 (1960), 335–354 (In Russ.)