On a characteristic of strongly embedded subspaces in symmetric spaces
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 2, pp. 25-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the presence of a lower $p$-estimate with constant $1$ in the symmetric space $E$ is sufficient for the condition of equivalence of convergence in norm and in measure on the subspace $H$ of the space $E$ to be satisfied if and only if the numerical characteristic $\eta_ {E}(H) 1. $ The last criterion is also valid for symmetric spaces “close” to $L_ {1},$ more precisely, for which an analog of the Dunford–Pettis criterion of weak compactness is valid. In particular, it is shown that spaces “close” to $L_ {1},$ have the binary property: the characteristic $\eta_{E}(H)$ takes only two values, $0$ and $1$. This gives an example of binary Orlicz spaces different from the spaces $L_{p}$.
Keywords: rearrangement invariant space, Orlicz space, Orlicz norm, lower $p$-estimate with constant one, strongly embedded subspace, equivalent norms, convergence in measure.
Mots-clés : Luxemburg norm
@article{VSGU_2021_27_2_a2,
     author = {S. I. Strakhov},
     title = {On a characteristic of strongly embedded subspaces in symmetric spaces},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {25--32},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a2/}
}
TY  - JOUR
AU  - S. I. Strakhov
TI  - On a characteristic of strongly embedded subspaces in symmetric spaces
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 25
EP  - 32
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a2/
LA  - ru
ID  - VSGU_2021_27_2_a2
ER  - 
%0 Journal Article
%A S. I. Strakhov
%T On a characteristic of strongly embedded subspaces in symmetric spaces
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 25-32
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a2/
%G ru
%F VSGU_2021_27_2_a2
S. I. Strakhov. On a characteristic of strongly embedded subspaces in symmetric spaces. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 2, pp. 25-32. http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a2/

[1] Kadec M. I., Pelczyński A., “Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$”, Studia Mathematica, 21 (1962), 161–176 | DOI | MR

[2] Tokarev E. V., “Subspaces of symmetric spaces of functions”, Functional Analysis and Its Applications, 13 (1979), 152–153 (English) | DOI | MR | Zbl

[3] Novikov S.Ya., Geometric properties of symmetric spaces, Candidate's of Physical and Mathematical Sciences thesis, Voronezh, 1980 (In Russ.)

[4] Astashkin S. V., Semenov E. M., “On a Property of Rearrangement Invariant Spaces whose Second Kothe Dual is Nonseparable”, Mathematical Notes, 107 (2020), 10–19 (English) | DOI | DOI | MR | MR | Zbl

[5] Maligranda L., Orlicz Spaces and Interpolation, Seminars in Mathematics, 5, University of Campinas, Campinas, 1989 | MR | Zbl

[6] Krasnoselskii M. A., Rutitskii Ya.B., Convex functions and Orlicz spaces, Modern problems of Mathematics, Fizmatgiz, M., 1958 (In Russ.)

[7] Harjulehto P., Hästö P., Orlicz spaces and Generalized Orlicz spaces, Lecture Notes in Mathematics, Springer, Cham, 2019 | DOI | MR | Zbl

[8] Albiac F., Kalton N. J., Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer, New York, 2006 | DOI | MR | Zbl

[9] Astashkin S. V., Strakhov S. I., “On Symmetric Spaces With Convergence in Measure on Reflexive Subspaces”, Russian Mathematics, 62 (2018), 1–8 (English) | DOI | MR | Zbl

[10] Hao C., Kaminska A., Tomczak-Jaegermann N., “Orlicz spaces with convexity or concavity constant one”, Journal of Mathematical Analysis and Applications, 320:1 (2006), 303–321 | DOI | MR | Zbl

[11] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Function spaces, Springer-Verlag, Berlin-New York, 1979 https://books.google.ru/books?id=yPPrCAAAQBAJ&hl=ru&source=gbs_similarbooks | Zbl

[12] Astashkin S. V., Kalton N. J., Sukochev F. A., “Cesaro mean convergence of martingale differences in rearrangement invariant spaces”, Positivity, 12 (2008), 387–406 | DOI | MR | Zbl

[13] Leśnik K., Maligranda L., Tomaszewski J., Weakly compact sets and weakly compact pointwise multipliers in Banach function lattices, 2019, arXiv: 1912.08164 | MR

[14] Astashkin S. V., Strakhov S. I., “On Disjointly Homogeneous Orlicz-Lorentz Spaces”, Mathematical Notes, 108:5 (2020), 631–642 (English) | DOI | DOI | MR | Zbl