Critical travelling waves in one model of the ”reaction-diffusion” type
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 2, pp. 16-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the order reduction for critical traveling wave problems for a reaction-diffusion type systems. The mathematical apparatus is based on the geometric theory of singular perturbations and the canards technique. The use of the method of invariant manifolds of singularly perturbed systems allows us to replace the study of traveling waves of the original PDE system by analyzing their profiles in a ODE system of a lower order.
Mots-clés : singular perturbations, singular perturbations, fast variables
Keywords: slow invariant manifolds, critical travelling waves, integral manifold, order reduction, asymptotic expansion, differential equations, slow variables.
@article{VSGU_2021_27_2_a1,
     author = {V. A. Sobolev and E. A. Tropkina and E. A. Shchepakina and L. Zhang and J. Wang},
     title = {Critical travelling waves in one model of the {\textquotedblright}reaction-diffusion{\textquotedblright} type},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {16--24},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a1/}
}
TY  - JOUR
AU  - V. A. Sobolev
AU  - E. A. Tropkina
AU  - E. A. Shchepakina
AU  - L. Zhang
AU  - J. Wang
TI  - Critical travelling waves in one model of the ”reaction-diffusion” type
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 16
EP  - 24
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a1/
LA  - ru
ID  - VSGU_2021_27_2_a1
ER  - 
%0 Journal Article
%A V. A. Sobolev
%A E. A. Tropkina
%A E. A. Shchepakina
%A L. Zhang
%A J. Wang
%T Critical travelling waves in one model of the ”reaction-diffusion” type
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 16-24
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a1/
%G ru
%F VSGU_2021_27_2_a1
V. A. Sobolev; E. A. Tropkina; E. A. Shchepakina; L. Zhang; J. Wang. Critical travelling waves in one model of the ”reaction-diffusion” type. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 2, pp. 16-24. http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a1/

[1] Bogolyubov N. N., Mitropolsky Yu.A., Asymptotic methods in the theory of nonlinear oscillations, Nauka, M., 1974, 503 pp. (In Russ.) | MR

[2] Bogolyubov N. N., Mitropolsky Yu.A., Method of integral manifolds in nonlinear mechanics, Naukova Dumka, Kyiv, 1961 (In Russ.)

[3] Hale J., “Integral manifolds of perturbed differential systems”, Annals of Mathematics. Second Series, 73:3 (1961), 496–531 | DOI | MR | Zbl

[4] Fenichel N., “Geometric singular perturbation theory for ordinary differential equations”, Journal of Differential Equations, 31 (1979), 53–98 | DOI | MR | Zbl

[5] Henry D., Geometrical Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 804, Springer, Berlin, 1981 | DOI | MR

[6] Sobolev V. A., “Integral manifolds and decomposition of singularly perturbed systems”, System and Control Letters, 5:3 (1984), 169–179 | DOI | MR | Zbl

[7] Jones C. K.R.T., “Geometric Singular Perturbation Theory”, Dynamical Systems, Montecatini Terme, Lecture Notes in Mathematics, 1609, ed. Johnson R., Springer-Verlag, Berlin, 1994, 44–118 | DOI | MR

[8] Mishchenko E. F., Rozov N.Kh., Differential equations with small parameters and relaxation oscillations, Nauka, M., 1975, 248 pp. (In Russ.)

[9] Mishchenko E. F., Kolesov Yu.S., Kolesov A.Yu., Rozov N.Kh., Periodic motions and bifurcation processes in singularly perturbed systems, Nauka, M., 1995, 336 pp. (In Russ.)

[10] Shchepakina E., Sobolev V., Mortell M. P., Singular Perturbations. Introduction to system order reduction methods with applications, Lecture Notes in Mathematics, 2114, Springer, Berlin–Heidelberg–London, 2014 | DOI | MR | Zbl

[11] Schneider K., Shchepakina E., Sobolev V., “A new type of travelling wave solutions”, Mathematical Methods in the Applied Sciences, 26:16 (2003), 1349–1361 | DOI | MR | Zbl

[12] Shchepakina E., Sobolev V., “Black Swans and Canards in Laser and Combustion Models”, Singular Perturbation and Hysteresis, eds. Mortelli M. P. et al., SIAM, Philadelphia, 2005, 207–255 | DOI | MR | Zbl

[13] Mishchenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Autowave processes in nonlinear diffusive media, Fizmatlit, M., 2010, 395 pp. (In Russ.)

[14] Shchepakina E., “Canard Traveling Waves in a Reaction-Diffusion Model”, Proceedings of ITNT 2020–6th IEEE International Conference on Information Technology and Nanotechnology, 2020, 9253177 | DOI

[15] Shchepakina E., Tropkina E., “Order reduction for problems with traveling wave solutions to reaction-diffusion systems”, Journal of Physics: Conference Series, 1745:1 (2021), 012109 | DOI

[16] Sevčikova H., Kubiček M., Marek M., “Concentration waves — effects of an electric field”, Mathematical Modelling in Science and Technology, Pergamon Press, New York, 1984, 477–482 | DOI | MR

[17] Dunbar S. R., “Traveling wave in diffusive predator-prey equations: Periodic orbits and point–to–periodic heteroclinic orbits”, SIAM Journal on Applied Mathematics, 46 (1986), 1057–1078 | DOI | MR | Zbl

[18] Huang W., “Traveling waves connecting equilibrium and periodic orbit for reaction-diffusion equations with time delay and nonlocal response”, Journal of Differential Equations, 244 (2008), 1230–1254 | DOI | MR | Zbl

[19] Huang Y., Weng P., “Periodic traveling wave train and point–to–periodic traveling wave for a diffusive predator-preysystem with Ivlev–type functional response”, Journal of Mathematical Analysis and Applications, 417 (2014), 376–393 | DOI | MR | Zbl

[20] Liang D., Weng P. X., Wu J.H., “Travelling wave solutions in a delayed predator-prey diffusion PDE system: point–to–periodic and point–to–point waves”, Journal of Mathematical Analysis and Applications, 77 (2012), 516–545 | DOI | MR | Zbl

[21] Duehring D., Huang W., “Periodic traveling waves for diffusion equations with time delayed and non–local responding reaction”, Journal of Dynamics and Differential Equations, 19 (2007), 457–477 | DOI | MR | Zbl

[22] Hasik K., Trofimchuk S., “Slowly oscillating wavefronts of the KPP–Fisher delayed equation”, Discrete and Continuous Dynamical Systems, 34 (2014), 3511–3533 | DOI | MR | Zbl

[23] Hasik K., Kopfova J., Nabelkova P., Trofimchuk S., “Traveling waves in the nonlocal KPP–Fisher equation: Different roles of the right and the left interactions”, Journal of Differential Equations, 260 (2016), 6130–6175 | DOI | MR | Zbl

[24] Zhang L., Wang J., Shchepakina E., Sobolev V., “New type of solitary wave solution with coexisting crest and trough for a perturbed wave equation”, Nonlinear Dyn., 106 (2021), 3479–3493 | DOI

[25] Merkin J. H., Poole A. J., Scott S. K., “Chemical wave responses to periodic stimuli in vulnerable excitable media”, Journal of the Chemical Society, Faraday Transactions, 93:9 (1997), 1741–1745 | DOI

[26] Bordiougov G., Engel H., “From trigger to phase waves and back again”, Physica D, 215 (2006), 25–37 | DOI | MR | Zbl

[27] Diener M., Nessie et Les Canards, Publication IRMA, Strasbourg, 1979

[28] Benoit E., Callot J. L., Diener F., Diener M., “Chasse au canard”, Collect. Math., 31–32 (1981–1982), 37–119 https://www.researchgate.net/publication/265548510_Chasse_au_canard | MR

[29] Arnold V. I., Afraimovich V. S., Il'yashenko Yu.S., Shil'nikov L. P., Theory of Bifurcations Dynamical Systems, Encyclopedia of Mathematical Sciences, 5, Springer-Verlag, New York, 1994

[30] Eckhaus M. W., Asymptotic Analysis of Singular Perturbations, Studies in Mathematics and Its Applications, North-Holland Publ Co, Amsterdam–New York, 1979 | DOI | MR | Zbl

[31] Gorelov G. N., Sobolev V. A., “Mathematical modelling of critical phenomena in thermal explosion theory”, Combustion and Flame, 87 (1991), 203–210 | DOI

[32] Gorelov G. N., Sobolev V. A., “Duck–trajectories in a thermal explosion problem”, Applied mathematics letters, 5 (1992), 3–6 | DOI | MR | Zbl

[33] Korobeinikov A., Shchepakina E., Sobolev V., “Paradox of enrichment and system order reduction: bacteriophages dynamics as case study”, Mathematical Medicine and Biology, 33:3 (2016), 359–369 | DOI | MR | Zbl