Keywords: slow invariant manifolds, critical travelling waves, integral manifold, order reduction, asymptotic expansion, differential equations, slow variables.
@article{VSGU_2021_27_2_a1,
author = {V. A. Sobolev and E. A. Tropkina and E. A. Shchepakina and L. Zhang and J. Wang},
title = {Critical travelling waves in one model of the {\textquotedblright}reaction-diffusion{\textquotedblright} type},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {16--24},
year = {2021},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a1/}
}
TY - JOUR AU - V. A. Sobolev AU - E. A. Tropkina AU - E. A. Shchepakina AU - L. Zhang AU - J. Wang TI - Critical travelling waves in one model of the ”reaction-diffusion” type JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2021 SP - 16 EP - 24 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a1/ LA - ru ID - VSGU_2021_27_2_a1 ER -
%0 Journal Article %A V. A. Sobolev %A E. A. Tropkina %A E. A. Shchepakina %A L. Zhang %A J. Wang %T Critical travelling waves in one model of the ”reaction-diffusion” type %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2021 %P 16-24 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a1/ %G ru %F VSGU_2021_27_2_a1
V. A. Sobolev; E. A. Tropkina; E. A. Shchepakina; L. Zhang; J. Wang. Critical travelling waves in one model of the ”reaction-diffusion” type. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 2, pp. 16-24. http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a1/
[1] Bogolyubov N. N., Mitropolsky Yu.A., Asymptotic methods in the theory of nonlinear oscillations, Nauka, M., 1974, 503 pp. (In Russ.) | MR
[2] Bogolyubov N. N., Mitropolsky Yu.A., Method of integral manifolds in nonlinear mechanics, Naukova Dumka, Kyiv, 1961 (In Russ.)
[3] Hale J., “Integral manifolds of perturbed differential systems”, Annals of Mathematics. Second Series, 73:3 (1961), 496–531 | DOI | MR | Zbl
[4] Fenichel N., “Geometric singular perturbation theory for ordinary differential equations”, Journal of Differential Equations, 31 (1979), 53–98 | DOI | MR | Zbl
[5] Henry D., Geometrical Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 804, Springer, Berlin, 1981 | DOI | MR
[6] Sobolev V. A., “Integral manifolds and decomposition of singularly perturbed systems”, System and Control Letters, 5:3 (1984), 169–179 | DOI | MR | Zbl
[7] Jones C. K.R.T., “Geometric Singular Perturbation Theory”, Dynamical Systems, Montecatini Terme, Lecture Notes in Mathematics, 1609, ed. Johnson R., Springer-Verlag, Berlin, 1994, 44–118 | DOI | MR
[8] Mishchenko E. F., Rozov N.Kh., Differential equations with small parameters and relaxation oscillations, Nauka, M., 1975, 248 pp. (In Russ.)
[9] Mishchenko E. F., Kolesov Yu.S., Kolesov A.Yu., Rozov N.Kh., Periodic motions and bifurcation processes in singularly perturbed systems, Nauka, M., 1995, 336 pp. (In Russ.)
[10] Shchepakina E., Sobolev V., Mortell M. P., Singular Perturbations. Introduction to system order reduction methods with applications, Lecture Notes in Mathematics, 2114, Springer, Berlin–Heidelberg–London, 2014 | DOI | MR | Zbl
[11] Schneider K., Shchepakina E., Sobolev V., “A new type of travelling wave solutions”, Mathematical Methods in the Applied Sciences, 26:16 (2003), 1349–1361 | DOI | MR | Zbl
[12] Shchepakina E., Sobolev V., “Black Swans and Canards in Laser and Combustion Models”, Singular Perturbation and Hysteresis, eds. Mortelli M. P. et al., SIAM, Philadelphia, 2005, 207–255 | DOI | MR | Zbl
[13] Mishchenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Autowave processes in nonlinear diffusive media, Fizmatlit, M., 2010, 395 pp. (In Russ.)
[14] Shchepakina E., “Canard Traveling Waves in a Reaction-Diffusion Model”, Proceedings of ITNT 2020–6th IEEE International Conference on Information Technology and Nanotechnology, 2020, 9253177 | DOI
[15] Shchepakina E., Tropkina E., “Order reduction for problems with traveling wave solutions to reaction-diffusion systems”, Journal of Physics: Conference Series, 1745:1 (2021), 012109 | DOI
[16] Sevčikova H., Kubiček M., Marek M., “Concentration waves — effects of an electric field”, Mathematical Modelling in Science and Technology, Pergamon Press, New York, 1984, 477–482 | DOI | MR
[17] Dunbar S. R., “Traveling wave in diffusive predator-prey equations: Periodic orbits and point–to–periodic heteroclinic orbits”, SIAM Journal on Applied Mathematics, 46 (1986), 1057–1078 | DOI | MR | Zbl
[18] Huang W., “Traveling waves connecting equilibrium and periodic orbit for reaction-diffusion equations with time delay and nonlocal response”, Journal of Differential Equations, 244 (2008), 1230–1254 | DOI | MR | Zbl
[19] Huang Y., Weng P., “Periodic traveling wave train and point–to–periodic traveling wave for a diffusive predator-preysystem with Ivlev–type functional response”, Journal of Mathematical Analysis and Applications, 417 (2014), 376–393 | DOI | MR | Zbl
[20] Liang D., Weng P. X., Wu J.H., “Travelling wave solutions in a delayed predator-prey diffusion PDE system: point–to–periodic and point–to–point waves”, Journal of Mathematical Analysis and Applications, 77 (2012), 516–545 | DOI | MR | Zbl
[21] Duehring D., Huang W., “Periodic traveling waves for diffusion equations with time delayed and non–local responding reaction”, Journal of Dynamics and Differential Equations, 19 (2007), 457–477 | DOI | MR | Zbl
[22] Hasik K., Trofimchuk S., “Slowly oscillating wavefronts of the KPP–Fisher delayed equation”, Discrete and Continuous Dynamical Systems, 34 (2014), 3511–3533 | DOI | MR | Zbl
[23] Hasik K., Kopfova J., Nabelkova P., Trofimchuk S., “Traveling waves in the nonlocal KPP–Fisher equation: Different roles of the right and the left interactions”, Journal of Differential Equations, 260 (2016), 6130–6175 | DOI | MR | Zbl
[24] Zhang L., Wang J., Shchepakina E., Sobolev V., “New type of solitary wave solution with coexisting crest and trough for a perturbed wave equation”, Nonlinear Dyn., 106 (2021), 3479–3493 | DOI
[25] Merkin J. H., Poole A. J., Scott S. K., “Chemical wave responses to periodic stimuli in vulnerable excitable media”, Journal of the Chemical Society, Faraday Transactions, 93:9 (1997), 1741–1745 | DOI
[26] Bordiougov G., Engel H., “From trigger to phase waves and back again”, Physica D, 215 (2006), 25–37 | DOI | MR | Zbl
[27] Diener M., Nessie et Les Canards, Publication IRMA, Strasbourg, 1979
[28] Benoit E., Callot J. L., Diener F., Diener M., “Chasse au canard”, Collect. Math., 31–32 (1981–1982), 37–119 https://www.researchgate.net/publication/265548510_Chasse_au_canard | MR
[29] Arnold V. I., Afraimovich V. S., Il'yashenko Yu.S., Shil'nikov L. P., Theory of Bifurcations Dynamical Systems, Encyclopedia of Mathematical Sciences, 5, Springer-Verlag, New York, 1994
[30] Eckhaus M. W., Asymptotic Analysis of Singular Perturbations, Studies in Mathematics and Its Applications, North-Holland Publ Co, Amsterdam–New York, 1979 | DOI | MR | Zbl
[31] Gorelov G. N., Sobolev V. A., “Mathematical modelling of critical phenomena in thermal explosion theory”, Combustion and Flame, 87 (1991), 203–210 | DOI
[32] Gorelov G. N., Sobolev V. A., “Duck–trajectories in a thermal explosion problem”, Applied mathematics letters, 5 (1992), 3–6 | DOI | MR | Zbl
[33] Korobeinikov A., Shchepakina E., Sobolev V., “Paradox of enrichment and system order reduction: bacteriophages dynamics as case study”, Mathematical Medicine and Biology, 33:3 (2016), 359–369 | DOI | MR | Zbl