Mots-clés : Goppa codes
@article{VSGU_2021_27_2_a0,
author = {S. M. Ratseev and O. I. Cherevatenko},
title = {On decoding algorithms for generalized {Reed~{\textemdash}} {Solomon} codes with errors and {erasures.~II}},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {7--15},
year = {2021},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a0/}
}
TY - JOUR AU - S. M. Ratseev AU - O. I. Cherevatenko TI - On decoding algorithms for generalized Reed — Solomon codes with errors and erasures. II JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2021 SP - 7 EP - 15 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a0/ LA - ru ID - VSGU_2021_27_2_a0 ER -
%0 Journal Article %A S. M. Ratseev %A O. I. Cherevatenko %T On decoding algorithms for generalized Reed — Solomon codes with errors and erasures. II %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2021 %P 7-15 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a0/ %G ru %F VSGU_2021_27_2_a0
S. M. Ratseev; O. I. Cherevatenko. On decoding algorithms for generalized Reed — Solomon codes with errors and erasures. II. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 2, pp. 7-15. http://geodesic.mathdoc.fr/item/VSGU_2021_27_2_a0/
[1] Gao S., “A new algorithm for decoding Reed — Solomon codes”, Communications, Information and Network Security, The Springer International Series in Engineering and Computer Science (Communications and Information Theory), 712, eds. Bhargava V.K., Poor H.V., Tarokh V., Yoon S., Springer, Boston, MA, 2003, 55–68 | DOI | Zbl
[2] Massey J.L., “Shift-register synthesis and BCH decoding”, IEEE Trans. Inf. Theory, IT 15:1 (1969), 122–127 https://crypto.stanford.edu/m̃ironov/cs359/massey.pdf | DOI | Zbl
[3] Ratseev S.M., Cherevatenko O.I., “On decoding algorithms for generalized Reed-Solomon codes with errors and erasures”, Vestnik of Samara University. Natural Science Series, 26:3 (2020), 17–29 (In Russ.) | DOI | MR | Zbl
[4] Fedorenko S.V., “A simple algorithm for decoding algebraic codes”, Information and Control Systems, 2008, no. 3(34), 23–27 (In Russ.)
[5] Goppa V.D., “A New Class of Linear Correcting Codes”, Problems of Information Transmission, 6:3 (1970), 207–212 (In Russ.) | MR | Zbl
[6] Ratseev S.M., Elements of higher algebra and coding theory, Lan', St. Petersburg, 2022, 656 pp. (In Russ.)
[7] Ratseev S.M., “On decoding algorithms for Goppa codes”, Chelyabinsk Physical and Mathematical Journal, 5:3 (2020), 327–341 (In Russ.) | DOI | MR | Zbl
[8] Patterson N.J., “The algebraic decoding of Goppa codes”, IEEE Transactions on Information Theory, 21:2 (1975), 203–207 | DOI | MR | Zbl
[9] Bernstein D., Chou T., Lange T., Maurich I., Misoczki R., Niederhagen R., Persichetti E., Peters C., Schwabe P., Sendrier N., Szefer J., Wang W., Classic McEliece: conservative code-based cryptography. Project documentation, 2019 (angl.) (accessed: 22.12.2020) https://classic.mceliece.org/nist/mceliece-20190331.pdf | MR
[10] Ratseev S.M., Mathematical methods of information security, textbook, Lan', Saint Petersburg, 2022, 544 pp. (In Russ.)