@article{VSGU_2021_27_1_a6,
author = {S. A. Lychev and K. G. Koifman and A. V. Digilov},
title = {Nonlinear dynamic equations for elastic micromorphic solids and shells. {Part~I}},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {81--103},
year = {2021},
volume = {27},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a6/}
}
TY - JOUR AU - S. A. Lychev AU - K. G. Koifman AU - A. V. Digilov TI - Nonlinear dynamic equations for elastic micromorphic solids and shells. Part I JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2021 SP - 81 EP - 103 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a6/ LA - en ID - VSGU_2021_27_1_a6 ER -
%0 Journal Article %A S. A. Lychev %A K. G. Koifman %A A. V. Digilov %T Nonlinear dynamic equations for elastic micromorphic solids and shells. Part I %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2021 %P 81-103 %V 27 %N 1 %U http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a6/ %G en %F VSGU_2021_27_1_a6
S. A. Lychev; K. G. Koifman; A. V. Digilov. Nonlinear dynamic equations for elastic micromorphic solids and shells. Part I. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 1, pp. 81-103. http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a6/
[1] Lebedev L. P., Cloud M. J., Eremeyev V. A., Tensor Analysis with Applications in Mechanics, World Scientific, 2010 | DOI | MR | Zbl
[2] Ciarlet P. G., Mathematical elasticity, v. II, Theory of Plates, Elsevier, 1997 | MR | Zbl
[3] Ciarlet P. G., Mathematical elasticity, v. III, Theory of Shells, North Holland, 2000, 659 pp. https://readli.net/theory-of-shells/ | MR | Zbl
[4] Libai A., Simmonds J. G., The Nonlinear Theory of Elastic Shells, Cambridge University Press, Cambridge, 1998 | DOI | MR | Zbl
[5] Ambartsumian S. A., Micropolar Theory of Shells and Plates, Nats. akad. nauk Resp. Armeniya. In-t problem informatiki i avtomatizatsii. Lab. komp'yuter. poligrafii, Erevan, 1999 (In Russ.)
[6] Eremeyev V. A., Altenbach H., “Basics of Mechanics of Micropolar Shells”, Shell-like Structures, CISM International Centre for Mechanical Sciences (Courses and Lectures), 572, eds. Altenbach H., Eremeyev V. A., Springer, Heidelberg–Cham, 2017, 63–111 | DOI | MR
[7] Zubov L. M., Eremeyev V. A., “Mechanics of elastic micropolar shells”, Far Eastern Mathematical Journal, 4:2 (2003), 182–225 (In Russ.)
[8] Zhilin P. A., “Basic equations of non-classical theory of elastic shells”, Dinamika i prochnost' mashin: Trudy Leningradskogo politekhnicheskogo instituta, 386 (1982), 29–46 (In Russ.)
[9] Wang C. C., “Universal Solutions for Incompressible Laminated Bodies”, Continuum Theory of Inhomogeneities in Simple Bodies, eds. Noll W., Toupin R. A., Wang C. C., Springer, Heidelberg–Cham, 1968, 149–180 | DOI | MR
[10] Cohen H., Wang C. C., “Some equilibrium problems for fibrillar bodies”, Archive for Rational Mechanics and Analysis, 123:4 (1993), 337–375 | DOI | MR | Zbl
[11] Noll W., “Materially uniform simple bodies with inhomogeneities”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 1–32 | DOI | MR
[12] Lewicka M., Mahadevan L., Pakzad M. R., “Models for elastic shells with incompatible strains”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470:2165 (2014) | DOI
[13] Lychev S. A., “Equilibrium equations for transversely accreted shells”, ZAMM — Journal of Applied Mathematics and Mechanics. Zeitschrift fur Angewandte Mathematik und Mechanik, 94:1–2 (2014), 118–129 | DOI | MR | Zbl
[14] Lychev S. A., Altenbach H., “Growing Solids and Thin-Walled Structures”, Procedia IUTAM, 23 (2017), 13–32 | DOI
[15] Epstein M., Leon M., “Geometrical theory of uniform Cosserat media”, Journal of Geometry and Physics, 26:1–2 (1998), 127–170 | DOI | MR | Zbl
[16] Bucataru I., Epstein M., “Geometrical theory of dislocations in bodies with microstructure”, Journal of Geometry and Physics, 52:1 (2004), 57–73 | DOI | MR | Zbl
[17] Postnikov M. M., Lectures in Geometry: Analytic Geometry, URSS, M., 1994 (In Russ.)
[18] Postnikov M. M., Lectures in Geometry: Linear Algebra and Differential Geometry, URSS, 1994 (In Russ.)
[19] Rudolph G., Schmidt M., Differential Geometry and Mathematical Physics, v. I, Manifolds, Lie Groups and Hamiltonian Systems, Springer Science+ Business Media, Dordrecht, 2013 | DOI | MR | Zbl
[20] Rudolph G., Schmidt M., Differential Geometry and Mathematical Physics, v. II, Fibre Bundles, Topology and Gauge Fields, Springer Science+ Business Media, Dordrecht, 2017 | DOI | MR | Zbl
[21] Wang C. C., “On the geometric structure of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations”, Continuum Theory of Inhomogeneities in Simple Bodies, eds. Noll W., Toupin R. A., Wang C. C., Springer, Heidelberg, 1968, 87–148 | DOI | MR
[22] Yavari A., Goriely A., “Riemann — Cartan geometry of nonlinear dislocation mechanics”, Archive for Rational Mechanics and Analysis, 205:1 (2012), 59–118 | DOI | MR | Zbl
[23] Yavari A., Goriely A., “Weyl geometry and the nonlinear mechanics of distributed point defects”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468:2148 (2012), 3902–3922 | DOI | MR | Zbl
[24] Lychev S. A., Koifman K. G., Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics, De Gruyter, 2018 | DOI | MR | Zbl
[25] Lee J. M., Introduction to Smooth Manifolds, Springer, New York, 2012, 486 pp. http://inis.jinr.ru/sl/M_Mathematics/MD_Geometry | MR
[26] Lychev S. A., Koifman K. G., “Material Affine Connections for Growing Solids”, Lobachevskii Journal of Mathematics, 41:10 (2020), 2034–2052 | DOI | MR | Zbl
[27] Husemoller D., Fibre Bundles, Springer, New York, 1994 https://www.maths.ed.ac.uk/ṽ1ranick/papers/husemoller | MR
[28] Epstein M., Differential Geometry: Basic Notions and Physical Examples, Springer International Publishing, 2014 | DOI | MR | Zbl
[29] Naber G. L., Topology, Geometry and Gauge fields: Foundations, Springer-Verlag, New York, 2011 | DOI | MR | Zbl
[30] Gurtin M. E., Murdoch A. I., “A continuum theory of elastic material surfaces”, Archive for Rational Mechanics and Analysis, 57:4 (1975), 291–323 | DOI | MR | Zbl
[31] Marsden J. E., Hughes T. J., Mathematical foundations of elasticity, Courier Corporation, New York, 1994 https://resolver.caltech.edu/CaltechBOOK:1983.002
[32] Lurie A. I., Analytical Mechanics, GIFML, M., 1961
[33] Liang K. K., Efficient conversion from rotating matrix to rotation axis and angle by extending Rodrigues' formula, 2018, arXiv: 1810.02999
[34] Delphenich D. H., Mechanics of Cosserat media: I. Non-relativistic statics, 2012, arXiv: 1212.0399
[35] Mindlin R. D., “Micro-structure in linear elasticity”, Archive for Rational Mechanics and Analysis, 16 (1964), 51–78 | DOI | MR | Zbl
[36] Lychev S. A., Koifman K. G., “Contorsion of Material Connection in Growing Solids”, Lobachevskii Journal of Mathematics, 42:8 (2021), 1852–1875 | DOI | MR | Zbl
[37] Kupferman R., Olami E., Segev R., “Continuum Dynamics on Manifolds: Application to Elasticity of Residually-Stressed Bodies”, Journal of Elasticity, 128:1 (2017), 61–84 | DOI | MR | Zbl
[38] Lychev S.A, Kostin G. V., Koifman K. G., Lycheva T. N., “Non-Euclidean Geometry and Defected Structure for Bodies with Variable Material Composition”, Journal of Physics: Conference Series, 1250:1 (2019), 012035 | DOI | MR
[39] Chern S. S., Chen W. H., Lam K. S., Lectures on Differential Geometry, World Scientific, 1999 | DOI | MR | Zbl