Nonlinear dynamic equations for elastic micromorphic solids and shells. Part I
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 1, pp. 81-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper develops a general approach to deriving nonlinear equations of motion for solids whose material points possess additional degrees of freedom. The essential characteristic of this approach is the account of incompatible deformations that may occur in the body due to distributed defects or in the result of the some kind of process like growth or remodelling. The mathematical formalism is based on least action principle and Noether symmetries. The peculiarity of such formalism is in formal description of reference shape of the body, which in the case of incompatible deformations has to be regarded either as a continual family of shapes or some shape embedded into non-Euclidean space. Although the general approach yields equations for Cosserat-type solids, micromorphic bodies and shells, the latter differ significantly in the formal description of enhanced geometric structures upon which the action integral has to be defined. Detailed discussion of this disparity is given.
Keywords: nonlinear dynamics, micropolar and micromorphic solids, shells, finite deformations, incompatibility of deformations, non-Euclidean reference shape, fiber bundles, enhanced material and physical manifolds, least action, Noether symmetries, field equations, conservation laws.
@article{VSGU_2021_27_1_a6,
     author = {S. A. Lychev and K. G. Koifman and A. V. Digilov},
     title = {Nonlinear dynamic equations for elastic micromorphic solids and shells. {Part~I}},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {81--103},
     year = {2021},
     volume = {27},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a6/}
}
TY  - JOUR
AU  - S. A. Lychev
AU  - K. G. Koifman
AU  - A. V. Digilov
TI  - Nonlinear dynamic equations for elastic micromorphic solids and shells. Part I
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 81
EP  - 103
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a6/
LA  - en
ID  - VSGU_2021_27_1_a6
ER  - 
%0 Journal Article
%A S. A. Lychev
%A K. G. Koifman
%A A. V. Digilov
%T Nonlinear dynamic equations for elastic micromorphic solids and shells. Part I
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 81-103
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a6/
%G en
%F VSGU_2021_27_1_a6
S. A. Lychev; K. G. Koifman; A. V. Digilov. Nonlinear dynamic equations for elastic micromorphic solids and shells. Part I. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 1, pp. 81-103. http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a6/

[1] Lebedev L. P., Cloud M. J., Eremeyev V. A., Tensor Analysis with Applications in Mechanics, World Scientific, 2010 | DOI | MR | Zbl

[2] Ciarlet P. G., Mathematical elasticity, v. II, Theory of Plates, Elsevier, 1997 | MR | Zbl

[3] Ciarlet P. G., Mathematical elasticity, v. III, Theory of Shells, North Holland, 2000, 659 pp. https://readli.net/theory-of-shells/ | MR | Zbl

[4] Libai A., Simmonds J. G., The Nonlinear Theory of Elastic Shells, Cambridge University Press, Cambridge, 1998 | DOI | MR | Zbl

[5] Ambartsumian S. A., Micropolar Theory of Shells and Plates, Nats. akad. nauk Resp. Armeniya. In-t problem informatiki i avtomatizatsii. Lab. komp'yuter. poligrafii, Erevan, 1999 (In Russ.)

[6] Eremeyev V. A., Altenbach H., “Basics of Mechanics of Micropolar Shells”, Shell-like Structures, CISM International Centre for Mechanical Sciences (Courses and Lectures), 572, eds. Altenbach H., Eremeyev V. A., Springer, Heidelberg–Cham, 2017, 63–111 | DOI | MR

[7] Zubov L. M., Eremeyev V. A., “Mechanics of elastic micropolar shells”, Far Eastern Mathematical Journal, 4:2 (2003), 182–225 (In Russ.)

[8] Zhilin P. A., “Basic equations of non-classical theory of elastic shells”, Dinamika i prochnost' mashin: Trudy Leningradskogo politekhnicheskogo instituta, 386 (1982), 29–46 (In Russ.)

[9] Wang C. C., “Universal Solutions for Incompressible Laminated Bodies”, Continuum Theory of Inhomogeneities in Simple Bodies, eds. Noll W., Toupin R. A., Wang C. C., Springer, Heidelberg–Cham, 1968, 149–180 | DOI | MR

[10] Cohen H., Wang C. C., “Some equilibrium problems for fibrillar bodies”, Archive for Rational Mechanics and Analysis, 123:4 (1993), 337–375 | DOI | MR | Zbl

[11] Noll W., “Materially uniform simple bodies with inhomogeneities”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 1–32 | DOI | MR

[12] Lewicka M., Mahadevan L., Pakzad M. R., “Models for elastic shells with incompatible strains”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470:2165 (2014) | DOI

[13] Lychev S. A., “Equilibrium equations for transversely accreted shells”, ZAMM — Journal of Applied Mathematics and Mechanics. Zeitschrift fur Angewandte Mathematik und Mechanik, 94:1–2 (2014), 118–129 | DOI | MR | Zbl

[14] Lychev S. A., Altenbach H., “Growing Solids and Thin-Walled Structures”, Procedia IUTAM, 23 (2017), 13–32 | DOI

[15] Epstein M., Leon M., “Geometrical theory of uniform Cosserat media”, Journal of Geometry and Physics, 26:1–2 (1998), 127–170 | DOI | MR | Zbl

[16] Bucataru I., Epstein M., “Geometrical theory of dislocations in bodies with microstructure”, Journal of Geometry and Physics, 52:1 (2004), 57–73 | DOI | MR | Zbl

[17] Postnikov M. M., Lectures in Geometry: Analytic Geometry, URSS, M., 1994 (In Russ.)

[18] Postnikov M. M., Lectures in Geometry: Linear Algebra and Differential Geometry, URSS, 1994 (In Russ.)

[19] Rudolph G., Schmidt M., Differential Geometry and Mathematical Physics, v. I, Manifolds, Lie Groups and Hamiltonian Systems, Springer Science+ Business Media, Dordrecht, 2013 | DOI | MR | Zbl

[20] Rudolph G., Schmidt M., Differential Geometry and Mathematical Physics, v. II, Fibre Bundles, Topology and Gauge Fields, Springer Science+ Business Media, Dordrecht, 2017 | DOI | MR | Zbl

[21] Wang C. C., “On the geometric structure of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations”, Continuum Theory of Inhomogeneities in Simple Bodies, eds. Noll W., Toupin R. A., Wang C. C., Springer, Heidelberg, 1968, 87–148 | DOI | MR

[22] Yavari A., Goriely A., “Riemann — Cartan geometry of nonlinear dislocation mechanics”, Archive for Rational Mechanics and Analysis, 205:1 (2012), 59–118 | DOI | MR | Zbl

[23] Yavari A., Goriely A., “Weyl geometry and the nonlinear mechanics of distributed point defects”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468:2148 (2012), 3902–3922 | DOI | MR | Zbl

[24] Lychev S. A., Koifman K. G., Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics, De Gruyter, 2018 | DOI | MR | Zbl

[25] Lee J. M., Introduction to Smooth Manifolds, Springer, New York, 2012, 486 pp. http://inis.jinr.ru/sl/M_Mathematics/MD_Geometry | MR

[26] Lychev S. A., Koifman K. G., “Material Affine Connections for Growing Solids”, Lobachevskii Journal of Mathematics, 41:10 (2020), 2034–2052 | DOI | MR | Zbl

[27] Husemoller D., Fibre Bundles, Springer, New York, 1994 https://www.maths.ed.ac.uk/ṽ1ranick/papers/husemoller | MR

[28] Epstein M., Differential Geometry: Basic Notions and Physical Examples, Springer International Publishing, 2014 | DOI | MR | Zbl

[29] Naber G. L., Topology, Geometry and Gauge fields: Foundations, Springer-Verlag, New York, 2011 | DOI | MR | Zbl

[30] Gurtin M. E., Murdoch A. I., “A continuum theory of elastic material surfaces”, Archive for Rational Mechanics and Analysis, 57:4 (1975), 291–323 | DOI | MR | Zbl

[31] Marsden J. E., Hughes T. J., Mathematical foundations of elasticity, Courier Corporation, New York, 1994 https://resolver.caltech.edu/CaltechBOOK:1983.002

[32] Lurie A. I., Analytical Mechanics, GIFML, M., 1961

[33] Liang K. K., Efficient conversion from rotating matrix to rotation axis and angle by extending Rodrigues' formula, 2018, arXiv: 1810.02999

[34] Delphenich D. H., Mechanics of Cosserat media: I. Non-relativistic statics, 2012, arXiv: 1212.0399

[35] Mindlin R. D., “Micro-structure in linear elasticity”, Archive for Rational Mechanics and Analysis, 16 (1964), 51–78 | DOI | MR | Zbl

[36] Lychev S. A., Koifman K. G., “Contorsion of Material Connection in Growing Solids”, Lobachevskii Journal of Mathematics, 42:8 (2021), 1852–1875 | DOI | MR | Zbl

[37] Kupferman R., Olami E., Segev R., “Continuum Dynamics on Manifolds: Application to Elasticity of Residually-Stressed Bodies”, Journal of Elasticity, 128:1 (2017), 61–84 | DOI | MR | Zbl

[38] Lychev S.A, Kostin G. V., Koifman K. G., Lycheva T. N., “Non-Euclidean Geometry and Defected Structure for Bodies with Variable Material Composition”, Journal of Physics: Conference Series, 1250:1 (2019), 012035 | DOI | MR

[39] Chern S. S., Chen W. H., Lam K. S., Lectures on Differential Geometry, World Scientific, 1999 | DOI | MR | Zbl