Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a Banach space
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 1, pp. 29-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solvability condition and the unique exact solution by the universal factorization (decomposition) method for a class of the abstract operator equations of the type $$ B_1u=\mathcal{A}u-S\Phi(A_0u)-GF(\mathcal{A}u)=f ,\quad u\in D(B_1), $$ where $\mathcal{A}, A_0$ are linear abstract operators, $G, S$ are linear vectors and $\Phi, F$ are linear functional vectors is investigagted. This class is useful for solving Boundary Value Problems (BVPs) with Integro-Differential Equations (IDEs), where $\mathcal{A}, A_0$ are differential operators and $F(\mathcal{A}u), \Phi(A_0u)$ are Fredholm integrals. It was shown that the operators of the type $B_1$ can be factorized in the some cases in the product of two more simple operators $B_G$, $B_{G_0}$ of special form, which are derived analytically. Further the solvability condition and the unique exact solution for $B_1u=f$ easily follow from the solvability condition and the unique exact solutions for the equations $B_G v=f$ and $B_{G_0}u=v$.
Keywords: correct operator, factorization (decomposition) method, Fredholm integro-differential equations, initial problem, nonlocal boundary value problem with integral boundary conditions.
@article{VSGU_2021_27_1_a2,
     author = {E. Providas and L. S. Pulkina and I. N. Parasidis},
     title = {Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a {Banach} space},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {29--43},
     year = {2021},
     volume = {27},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a2/}
}
TY  - JOUR
AU  - E. Providas
AU  - L. S. Pulkina
AU  - I. N. Parasidis
TI  - Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a Banach space
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 29
EP  - 43
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a2/
LA  - en
ID  - VSGU_2021_27_1_a2
ER  - 
%0 Journal Article
%A E. Providas
%A L. S. Pulkina
%A I. N. Parasidis
%T Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a Banach space
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 29-43
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a2/
%G en
%F VSGU_2021_27_1_a2
E. Providas; L. S. Pulkina; I. N. Parasidis. Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a Banach space. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 1, pp. 29-43. http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a2/

[1] Adomian G., Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Massachusets, 1994 | DOI | MR | Zbl

[2] Barkovskii L. M., Furs A. N., “Factorization of integro-differential equations of optics of dispersive anisotropic media and tensor integral operators of wave packet velocities”, Optics and Spectroscopy, 90:4 (2001), 561–567 | DOI

[3] Barkovskii L. M., Furs A. N., “Factorization of integro-differential equations of the acoustics of dispersive viscoelastic anisotropic media and the tensor integral operators of wave packet velocities”, Acoustical Physics, 48:2 (2002), 128–132 | DOI

[4] Caruntu D. I., “Relied studies on factorization of the differential operator in the case of bending vibration of a class of beams with variable cross-section”, Revue Roumaine des Sci. Tech. Serie de Mecanique Appl., 41:5–6 (1996), 389–397 | MR

[5] Hirsa A., Neftci S. N., An Introduction to the Mathematics of Financial Derivatives, Academic Press, Cambridge, 2013 | DOI | MR | Zbl

[6] Fahmy E. S., “Travelling wave solutions for some time-delayed equations through factorizations”, Chaos Solitons Fractals, 38:4 (2008), 1209–1216 | DOI | MR | Zbl

[7] Geiser J., Decomposition methods for differential equations: theory and applications, CRC Press, Taylor and Francis Group, Boca Raton, 2009, 304 pp. | DOI | MR | Zbl

[8] Dong S. H., Factorization Method in Quantum Mechanics, Fundamental Theories of Physics, 150, Springer, Dordrecht, 2007, 308 pp. https://777russia.ru/book/uploads/MEKhANIKA/Dong | MR | Zbl

[9] Nyashin Y., Lokhov V., Ziegler F., “Decomposition method in linear elastic problems with eigenstrain”, Zamm Journa of applied mathematics and mechanics: Zeitschrift fur angewandte Mathematic and Mechanic, 85:8 (2005), 557–570 | DOI | MR | Zbl

[10] C.V.M van der Mee, Semigroup and factorization methods in transport theory, Mathematical Centre Tracts, 146, Mathematisch Centrum, Amsterdam, 1981 https://ir.cwi.nl/pub/13006/13006D.pdf | MR | Zbl

[11] Berkovich L. M., “Factorization as a method of finding of exact invariant solutions of the Kolmogorov-Petrovskii-Piskunov equation and related equations of Semenov and Zel'dovich”, Doklady Akademii Nauk, 322:5 (1992), 823–827 | MR | Zbl

[12] Baskonus H. M., Bulut H., Pandir Y., “The natural transform decomposition method for linear and nonlinear partial differential equations”, Mathematics in Engineering, Science and Aerospace, 5:1 (2014), 111–126 http://nonlinearstudies.com/index.php/mesa/article/view/823 | Zbl

[13] Berkovich L. M., “Method of factorization of ordinary differential operators and some of its applications”, Applicable Analysis and Discrete Mathematics, 1:1 (2007), 122–149 | DOI | MR | Zbl

[14] Dehghan M., Tatari M., “Solution of a semilinear parabolic equation with an unknown control function using the decomposition procedure of Adomian”, Numerical Methods for Partial Differential Equations, 23:3 (2007), 499–510 | DOI | MR | Zbl

[15] El-Sayed S., Kaya D., Zarea S., “The Decomposition Method Applied to Solve High-order Linear Volterra-Fredholm Integro-differential Equations”, International Journal of Nonlinear Sciences and Numerical Simulation, 5:2 (2004), 105–112 | DOI | MR | Zbl

[16] Evans D. J., Raslan K. R., “The Adomain decomposition method for solving delay differential equation”, International Journal of Computer Mathematics, 00:1 (2004), 1–6 | DOI | MR

[17] Hamoud A. A., Ghadle K. P., “Modified Adomian Decomposition Method for Solving Fuzzy Volterra-Fredholm Integral Equation”, Journal of the Indian Mathematical Society, 85:1–2 (2018), 52–69 | DOI | MR

[18] Rawashdeh M. S., Maitama S., “Solving coupled system of nonliear PDEs using the natural decomposition method”, International Journal of Pure and Applied Mathematics, 92:5 (2014), 757–776 | DOI | MR

[19] Yang C., Hou J., “Numerical solution of integro-differential equations of fractional order by Laplace decomposition method”, WSEAS Transactions on Mathematics, 12:12 (2013), 1173–1183 https://wseas.org/multimedia/journals/mathematics/2013/b105706-249.pdf

[20] Wazwaz A. M., “The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations”, Applied Mathematics and Computation, 216:4 (2010), 1304–1309 | DOI | MR | Zbl

[21] Assanova A. T., “Nonlocal problem with integral conditions for the system of hyperbolic equations in the characteristic rectangle”, Russian Math., 61:5 (2017), 7–20 | DOI | MR | Zbl

[22] Kozhanov A. I., Pul'kina L. S., “On the Solvability of Boundary Value Problems with a Nonlocal Boundary Condition of Integral Form for Multidimentional Hyperbolic Equations”, Differential Equations, 42:9 (2006), 1233–1246 | DOI | MR | Zbl

[23] Ludmila S. Pulkina, “Nonlocal Problems for Hyperbolic Equation from the Viewpoint of Strongly Regular Boundary Conditions”, Electronic Journal of Differential Equations, 2020, no. 28, 1–20 https://ejde.math.txstate.edu/ | MR

[24] Pul'kina L. S., “Initial-Boundary Value Problem with a Nonlocal Boundary Condition for a Multidimensional Hyperbolic Equation”, Differential Equations, 44:8 (2008), 1119–1125 | DOI | MR

[25] Pul'kina L. S., “Boundary value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Mathematics, 56:4 (2012), 62–69 | DOI | MR | Zbl

[26] Parasidis I. N., Providas E., Tsekrekos P. C., “Factorization of linear operators and some eigenvalue problems of special operators”, Bulletin of Bashkir University, 17:2 (2012), 830–839 https://cyberleninka.ru/article/n/factorization-of-linear-operators-and-some-eigenvalue-problems-of-special-operators/

[27] Parasidis I. N., Providas E., Zaoutsos S., “On the Solution of Boundary Value Problems for Ordinary Differential Equations of Order $n$ and $2n$ with General Boundary Conditions”, Computational Mathematics and Variational Analysis, Springer Optimization and Its Applications, 159, eds. Daras N., Rassias T., Springer, Cham, 299–314 | DOI | MR | Zbl

[28] Vassiliev N. N., Parasidis I. N., Providas E., “Exact solution method for Fredholm integro-differential equations with multipoint and integral boundary conditions. Part 2. Decomposition-extension method for squared operators”, Information and Control Systems, 2019, no. 2, 2–9 | DOI | MR

[29] Providas E., I.N. Parasidis, “On the solution of some higher-order integro-differential equations of special form”, Vestnik of Samara University. Natural Science Series, 26:1 (2020), 14–22 | DOI | MR | Zbl

[30] Parassidis I. N., Tsekrekos P. C., “Some quadratic correct extensions of minimal operators in Banach space”, Operators and Matrices, 4:2 (2010), 225–243 | DOI | MR

[31] Parasidis I. N., “Extension and decomposition methods for differential and integro-differential equations”, Eurasian Mathematical Journal, 10:3 (2019), 48–67 | DOI | MR | Zbl