Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a Banach space
    
    
  
  
  
      
      
      
        
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 1, pp. 29-43
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The solvability condition and the unique exact solution  by the universal factorization (decomposition) method for a class of the abstract operator equations of the type
$$	B_1u=\mathcal{A}u-S\Phi(A_0u)-GF(\mathcal{A}u)=f ,\quad	u\in D(B_1),   $$
where $\mathcal{A}, A_0$ are linear abstract operators, $G, S$ are linear vectors and $\Phi, F$ are linear functional vectors is investigagted. This class is useful for solving Boundary
Value Problems (BVPs) with Integro-Differential Equations (IDEs), where  $\mathcal{A}, A_0$ are differential operators and $F(\mathcal{A}u), \Phi(A_0u)$ are Fredholm integrals.
It was shown that the operators of the type $B_1$ can be factorized in the some cases in the product of two more simple operators $B_G$, $B_{G_0}$  of special form, which  are
derived analytically. Further the solvability condition and the unique exact solution for $B_1u=f$ easily follow from the solvability condition and the unique exact solutions for the equations $B_G v=f$ and $B_{G_0}u=v$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
correct operator, factorization (decomposition) method, Fredholm integro-differential equations, initial problem, nonlocal boundary value problem with integral boundary conditions.
                    
                    
                    
                  
                
                
                @article{VSGU_2021_27_1_a2,
     author = {E. Providas and L. S. Pulkina and I. N. Parasidis},
     title = {Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a {Banach} space},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {29--43},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a2/}
}
                      
                      
                    TY - JOUR AU - E. Providas AU - L. S. Pulkina AU - I. N. Parasidis TI - Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a Banach space JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2021 SP - 29 EP - 43 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a2/ LA - en ID - VSGU_2021_27_1_a2 ER -
%0 Journal Article %A E. Providas %A L. S. Pulkina %A I. N. Parasidis %T Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a Banach space %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2021 %P 29-43 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a2/ %G en %F VSGU_2021_27_1_a2
E. Providas; L. S. Pulkina; I. N. Parasidis. Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a Banach space. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 1, pp. 29-43. http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a2/
