Mots-clés : non-local condition, Boussinesq equation, existence.
@article{VSGU_2021_27_1_a1,
author = {V. B. Dmitriev},
title = {Boundary value problem with a nonlocal boundary condition of integral form for a multidimensional equation of {IV} order},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {15--28},
year = {2021},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a1/}
}
TY - JOUR AU - V. B. Dmitriev TI - Boundary value problem with a nonlocal boundary condition of integral form for a multidimensional equation of IV order JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2021 SP - 15 EP - 28 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a1/ LA - ru ID - VSGU_2021_27_1_a1 ER -
%0 Journal Article %A V. B. Dmitriev %T Boundary value problem with a nonlocal boundary condition of integral form for a multidimensional equation of IV order %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2021 %P 15-28 %V 27 %N 1 %U http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a1/ %G ru %F VSGU_2021_27_1_a1
V. B. Dmitriev. Boundary value problem with a nonlocal boundary condition of integral form for a multidimensional equation of IV order. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 1, pp. 15-28. http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a1/
[1] Kozhanov A. I., Pul'kina L. S., “Boundary value problems with integral conditions for multidimensional hyperbolic equations”, Doklady Mathematics, 72:2 (2005), 743–746 (English) | MR | Zbl
[2] Kozhanov A. I., Pul'kina L. S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differential Equations, 42:9 (2006), 1233–1246 (Englsh) | DOI | MR | Zbl
[3] Kozhanov A. I., Pul'kina L. S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Doklady Mathematics, 404:5 (2005) (In Russ.) | Zbl
[4] Abdrakhmanov A. M., Kozhanov A. I., “A problem with a non-local boundary condition for one class of odd-order equations”, Russian Mathematics, 51:5 (2007), 1–10 | DOI | MR | MR | Zbl
[5] Abdrakhmanov A. M., “On the solvability of boundary value problem with integrodifferential boundary condition for some classes of composite type equations”, Mathematical Notes of YSU, 18:2 (2011), 3–10 (In Russ.) | Zbl
[6] Rayleigh J. W.S., Theory of sound, v. 1, GITTL, M., 1955, 273–274 (In Russ.)
[7] Sveshnikov A. G., Bogolyubov A. N., Kravtsov V. V., Lectures on mathematical physics, textbook, Izd-vo MGU, M., 1993, 313 pp. (In Russ.) | MR
[8] Gabov S. A., Sveshnikov A. G., Linear problems in the theory of nonstationary internal waves, Nauka, M., 1990, 344 pp. (In Russ.) | MR
[9] Egorov I. E., Fedorov V. E., High-order non-classical equations of mathematical physics, Izd-vo VTs SO RAN, Novosibirsk, 1995, 133 pp. (In Russ.) | MR
[10] Korpusov M. O., Destruction in nonclassical wave equations, URSS, M., 2010, 237 pp. (In Russ.)
[11] Dmitriev V. B., “A nonlocal problem with integral condition for a fourth order equation”, Vestnik of Samara State University. Natural Science Series, 2016, no. 3–4, 32–50 (In Russ.) | Zbl
[12] Popov N. S., “On the solvability of boundary value problems for multidimensional parabolic equations of fourth order with nonlocal boundary condition of integral form”, Mathematical Notes of NEFU, 23:1 (2016), 79–86 (In Russ.) | Zbl
[13] Popov N. S., “On the solvability of boundary value problems for higher-dimensional pseudohyperbolic equations with a nonlocal boundary condition in integral form”, Mathematical Notes of NEFU, 21:2 (2014), 69–80 (In Russ.) | Zbl
[14] Popov N. S., “Solvability of a boundary value problem for a pseudoparabolic equation with nonlocal integral conditions”, Diferential Equations, 51:3 (2015), 362–375 (English) | DOI | DOI | MR | Zbl
[15] Kozhanov A. I., Dyuzheva A. V., “Non-local problems with integral displacement for high-order parabolic equations”, The Bulletin of Irkutsk State University. Series Mathematics, 36 (2021), 14–28 (In Russ.) | DOI
[16] Yuldashev T. K., “Nonlocal boundary value problem for a nonhomogeneous pseudoparabolic-type integro-differential equation with degenerate kernel”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica = Science Journal of Volgograd State University. Mathematics. Physics, 2017, no. 1 (38), 42–54 (In Russ.) | DOI
[17] Yuldashev T. K., “On the boundary value problem for a three dimensional analog of the Boussinesq differential equation”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158, no. 3, 2016, 424–433 (In Russ.)
[18] Yuldashev T. K., “A certain Fredholm partial integro-differential equation of the third order”, Russian Mathematics, 59:9 (2015), 62–66 (English) | DOI | MR | Zbl
[19] Beylin A. B., Pulkina L. S., “Problem on vibration of a bar with nonlinear second-order boundary damping”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 2015, no. 3 (125), 9–20 (In Russ.) https://journals.ssau.ru/est/article/view/4487
[20] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka, M., 1973, 408 pp. (In Russ.) | MR
[21] Ladyzhenskaya O. A., Uraltseva N. N., Linear and quasi-linear equations of elliptic type, Nauka, M., 1973, 538 pp. (In Russ.) | MR
[22] Gording L., The Cauchy problem for hyperbolic equations, Moscow, L., 1961, 122 pp. (In Russ.)
[23] Trenogin V. A., Functional analysis, Nauka, M., 1980, 488 pp. (In Russ.) | MR
[24] Yakubov S. Ya., Linear differential-operator equations and their applications, Elm, Baku, 1985 (In Russ.)