Boundary value problem with a nonlocal boundary condition of integral form for a multidimensional equation of IV order
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 1, pp. 15-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to study the solvability of solution of non-local problem with integral condition in spatial variables for high-order linear equation in the classe of regular solutions (which have all the squared derivatives generalized by S.L. Sobolev that are included in the corresponding equation). It is indicated that at first similar problems were studied for high-order equations either in the one-dimensional case, or under certain conditions of smallness by the value of $T$. A list of new works for the multidimensional case is also given. In this paper, we present new results on the solvability of non-local problem with integral spatial variables for high-order equation a) in the multidimensional case with respect to spatial variables; b) in the absence of smallness conditions by the value $T$; however, this condition exists for the kernel $K(x,y,t)$. The research method is based on obtaining a priori estimates of the solution of the problem, which implies its existence and uniqueness in a given space.
Keywords: boundary value problem, high-order equation, priori estimates, integral boundary conditions, regular solutions, uniqueness
Mots-clés : non-local condition, Boussinesq equation, existence.
@article{VSGU_2021_27_1_a1,
     author = {V. B. Dmitriev},
     title = {Boundary value problem with a nonlocal boundary condition of integral form for a multidimensional equation of {IV} order},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {15--28},
     year = {2021},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a1/}
}
TY  - JOUR
AU  - V. B. Dmitriev
TI  - Boundary value problem with a nonlocal boundary condition of integral form for a multidimensional equation of IV order
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 15
EP  - 28
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a1/
LA  - ru
ID  - VSGU_2021_27_1_a1
ER  - 
%0 Journal Article
%A V. B. Dmitriev
%T Boundary value problem with a nonlocal boundary condition of integral form for a multidimensional equation of IV order
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 15-28
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a1/
%G ru
%F VSGU_2021_27_1_a1
V. B. Dmitriev. Boundary value problem with a nonlocal boundary condition of integral form for a multidimensional equation of IV order. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 1, pp. 15-28. http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a1/

[1] Kozhanov A. I., Pul'kina L. S., “Boundary value problems with integral conditions for multidimensional hyperbolic equations”, Doklady Mathematics, 72:2 (2005), 743–746 (English) | MR | Zbl

[2] Kozhanov A. I., Pul'kina L. S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differential Equations, 42:9 (2006), 1233–1246 (Englsh) | DOI | MR | Zbl

[3] Kozhanov A. I., Pul'kina L. S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Doklady Mathematics, 404:5 (2005) (In Russ.) | Zbl

[4] Abdrakhmanov A. M., Kozhanov A. I., “A problem with a non-local boundary condition for one class of odd-order equations”, Russian Mathematics, 51:5 (2007), 1–10 | DOI | MR | MR | Zbl

[5] Abdrakhmanov A. M., “On the solvability of boundary value problem with integrodifferential boundary condition for some classes of composite type equations”, Mathematical Notes of YSU, 18:2 (2011), 3–10 (In Russ.) | Zbl

[6] Rayleigh J. W.S., Theory of sound, v. 1, GITTL, M., 1955, 273–274 (In Russ.)

[7] Sveshnikov A. G., Bogolyubov A. N., Kravtsov V. V., Lectures on mathematical physics, textbook, Izd-vo MGU, M., 1993, 313 pp. (In Russ.) | MR

[8] Gabov S. A., Sveshnikov A. G., Linear problems in the theory of nonstationary internal waves, Nauka, M., 1990, 344 pp. (In Russ.) | MR

[9] Egorov I. E., Fedorov V. E., High-order non-classical equations of mathematical physics, Izd-vo VTs SO RAN, Novosibirsk, 1995, 133 pp. (In Russ.) | MR

[10] Korpusov M. O., Destruction in nonclassical wave equations, URSS, M., 2010, 237 pp. (In Russ.)

[11] Dmitriev V. B., “A nonlocal problem with integral condition for a fourth order equation”, Vestnik of Samara State University. Natural Science Series, 2016, no. 3–4, 32–50 (In Russ.) | Zbl

[12] Popov N. S., “On the solvability of boundary value problems for multidimensional parabolic equations of fourth order with nonlocal boundary condition of integral form”, Mathematical Notes of NEFU, 23:1 (2016), 79–86 (In Russ.) | Zbl

[13] Popov N. S., “On the solvability of boundary value problems for higher-dimensional pseudohyperbolic equations with a nonlocal boundary condition in integral form”, Mathematical Notes of NEFU, 21:2 (2014), 69–80 (In Russ.) | Zbl

[14] Popov N. S., “Solvability of a boundary value problem for a pseudoparabolic equation with nonlocal integral conditions”, Diferential Equations, 51:3 (2015), 362–375 (English) | DOI | DOI | MR | Zbl

[15] Kozhanov A. I., Dyuzheva A. V., “Non-local problems with integral displacement for high-order parabolic equations”, The Bulletin of Irkutsk State University. Series Mathematics, 36 (2021), 14–28 (In Russ.) | DOI

[16] Yuldashev T. K., “Nonlocal boundary value problem for a nonhomogeneous pseudoparabolic-type integro-differential equation with degenerate kernel”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica = Science Journal of Volgograd State University. Mathematics. Physics, 2017, no. 1 (38), 42–54 (In Russ.) | DOI

[17] Yuldashev T. K., “On the boundary value problem for a three dimensional analog of the Boussinesq differential equation”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158, no. 3, 2016, 424–433 (In Russ.)

[18] Yuldashev T. K., “A certain Fredholm partial integro-differential equation of the third order”, Russian Mathematics, 59:9 (2015), 62–66 (English) | DOI | MR | Zbl

[19] Beylin A. B., Pulkina L. S., “Problem on vibration of a bar with nonlinear second-order boundary damping”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 2015, no. 3 (125), 9–20 (In Russ.) https://journals.ssau.ru/est/article/view/4487

[20] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka, M., 1973, 408 pp. (In Russ.) | MR

[21] Ladyzhenskaya O. A., Uraltseva N. N., Linear and quasi-linear equations of elliptic type, Nauka, M., 1973, 538 pp. (In Russ.) | MR

[22] Gording L., The Cauchy problem for hyperbolic equations, Moscow, L., 1961, 122 pp. (In Russ.)

[23] Trenogin V. A., Functional analysis, Nauka, M., 1980, 488 pp. (In Russ.) | MR

[24] Yakubov S. Ya., Linear differential-operator equations and their applications, Elm, Baku, 1985 (In Russ.)