A problem with nonlocal condition for one-dimensional hyperbolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 1, pp. 7-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the problem with a dynamic nonlocal condition for the one-dimensional hyperbolic equation, which occurs in the study of rod vibrations. This problem may be used as a mathematical model of longitudinal vibration in a thick short bar and illustrates a nonlocal approach to such processes. Conditions have been obtained for input data, providing unambiguous resolution of the task, proof of the existence and singularity of the problem in the space of Sobolev. The proof is based on the a priori estimates obtained in this paper, Galerkin’s procedure and the properties of the Sobolev spaces.
Keywords: hyperbolic equation, nonlocal problem, integral conditions, singularity of the solution, solveability of the problem.
@article{VSGU_2021_27_1_a0,
     author = {A. V. Bogatov},
     title = {A problem with nonlocal condition for one-dimensional hyperbolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--14},
     year = {2021},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a0/}
}
TY  - JOUR
AU  - A. V. Bogatov
TI  - A problem with nonlocal condition for one-dimensional hyperbolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2021
SP  - 7
EP  - 14
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a0/
LA  - ru
ID  - VSGU_2021_27_1_a0
ER  - 
%0 Journal Article
%A A. V. Bogatov
%T A problem with nonlocal condition for one-dimensional hyperbolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2021
%P 7-14
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a0/
%G ru
%F VSGU_2021_27_1_a0
A. V. Bogatov. A problem with nonlocal condition for one-dimensional hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 27 (2021) no. 1, pp. 7-14. http://geodesic.mathdoc.fr/item/VSGU_2021_27_1_a0/

[1] Gordeziani D. G., Avalishvili G. A., “On the construcing of solutions of the nonlocal initial boundary value problems for one-dimensional medium oscillation equations”, Mathematical models and Computer Simulations, 12:1 (2000), 94–103 (In Russ.) | MR | Zbl

[2] Kozhanov A. I., “On the solvability of some boundary value problems with the Bitsadze-Samarsky condition for linear hyperbolic equations”, Sovremennaya matematika i ee prilozheniya. Tbilisi, 67 (2010), 84–96 (In Russ.)

[3] Kozhanov A. I., Pul'kina L. S., “On the solvability of some boundary value problems with displacement for linear hyperbolic equations”, Differential Equations, 42:9 (2006), 1233–1246 | DOI | MR | Zbl | Zbl

[4] Pul'kina L. S., “The $L_2$ solvability of a nonlocal problem with integral conditions for a hyperbolic equation”, Differential equations, 36:2 (2000), 316–318 (English) | DOI | MR | Zbl

[5] Pul'kina L. S., “A Mixed Problem with Integral Condition for the Hyperbolic Equation”, Mathematical Notes, 74:3 (2003), 411–421 (English) | DOI | DOI | MR

[6] Bouziani A., “Strong solution to an hyperbolic evolution problem with nonlocal boundary conditions”, Maghreb Math. Rev., 9 (2000), 71–84 | MR

[7] Beylin S. A., Mixed problems with integral conditions for the wave equation, Samara, 2005 (In Russ.)

[8] Pulkina L. S., “Solution to nonlocal problems of pseudohyperbolic equations”, EJDE, 116 (2014), 1–9 http://ejde.math.txstate.edu | MR

[9] Ladyzhenskaya O. A., Boundary problems of mathematical physics, Nauka, M., 1973, 407 pp. (In Russ.) | MR

[10] Mihailov V. P., Partial differential equations, Nauka, M., 1976, 391 pp. (In Russ.)