Quantum dynamics of the cubit system in external fields
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 68-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of two dipole-dipole interacting two-level elements (qubits) in external fields is considered. It is shown that using the coherent states (CS) of the dynamic symmetry group of the $SU(2)\times SU(2)$ system, the time evolution can be reduced to the "classical" dynamics of the complex parameters of the CS. The trajectories of the CS are constructed and the time dependences of the probability of finding qubits at the upper levels are calculated.
Keywords: coherent states, dynamical symmetry group, quantum dynamics, Kahler manifold, qubits, two-level atom
Mots-clés : dipole–dipole interaction.
@article{VSGU_2020_26_4_a6,
     author = {A. V. Gorokhov and G. I. Eremenko},
     title = {Quantum dynamics of the cubit system in external fields},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {68--75},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a6/}
}
TY  - JOUR
AU  - A. V. Gorokhov
AU  - G. I. Eremenko
TI  - Quantum dynamics of the cubit system in external fields
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2020
SP  - 68
EP  - 75
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a6/
LA  - ru
ID  - VSGU_2020_26_4_a6
ER  - 
%0 Journal Article
%A A. V. Gorokhov
%A G. I. Eremenko
%T Quantum dynamics of the cubit system in external fields
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2020
%P 68-75
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a6/
%G ru
%F VSGU_2020_26_4_a6
A. V. Gorokhov; G. I. Eremenko. Quantum dynamics of the cubit system in external fields. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 68-75. http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a6/

[1] F. A. Berezin, “Covariant and contravariant symbols of operators”, Mathematics of the USSR-Izvestiya, 6:5 (1972), 1117–1151 | DOI | Zbl

[2] A. M. Perelomov, Generalized coherent states and their applications, Nauka, M., 1986, 272 pp. (In Russ.)

[3] A. V. Gorokhov, “Coherent States and Path Integrals for Model Hamiltonians in Quantum Optics”, Bulletin of the Russian Academy of Sciences Physics, 80:7 (2016), 788–794 | DOI

[4] A. V. Gorokhov, Symmetry principles and quantum dynamics, Izd-vo «Samarskii universitet», Samara, 2015, 220 pp. (In Russ.)