@article{VSGU_2020_26_4_a5,
author = {L. V. Stepanova and K. N. Aldebeneva},
title = {Photoelastic study of a double edge notched plate for determination of the {Williams} series expansion},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {56--67},
year = {2020},
volume = {26},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a5/}
}
TY - JOUR AU - L. V. Stepanova AU - K. N. Aldebeneva TI - Photoelastic study of a double edge notched plate for determination of the Williams series expansion JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2020 SP - 56 EP - 67 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a5/ LA - en ID - VSGU_2020_26_4_a5 ER -
%0 Journal Article %A L. V. Stepanova %A K. N. Aldebeneva %T Photoelastic study of a double edge notched plate for determination of the Williams series expansion %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2020 %P 56-67 %V 26 %N 4 %U http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a5/ %G en %F VSGU_2020_26_4_a5
L. V. Stepanova; K. N. Aldebeneva. Photoelastic study of a double edge notched plate for determination of the Williams series expansion. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 56-67. http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a5/
[1] K. Ramesh, T. Kasimayan, B. N. Simon, “Digital photoelasticity A comprehensive review”, The Journal of Strain Analysis for Engineering Design, 46:4 (2011), 245–266 | DOI
[2] K. Ramesh, S. Sasikumar, “Digital photoelasticity: Recent developments and diverse applications”, Optics and Lasers in Engineering, 135 (2020), 106186 | DOI
[3] T. M. Jobin, S. N. Khaderi, M. Ramji, “Experimental evaluation of the strain intensity factor at the inclusion tip using digital photoelasticity”, Optics and Lasers in Engineering, 126 (2020), 105855 | DOI
[4] A. Vivekanandan, K. Ramesh, “Study of interaction effects of asymmetric cracks under biaxial loading using digital photoelasticity”, Theoretical and Applied Fracture Mechanics, 99 (2019), 104–117 | DOI
[5] V. S. Dolgikh, L. V. Stepanova, “A photoelastic and numeric study of the stress field in the vicinity of two interacting cracks: Stress intensity factors, T-stresses and higher order terms”, AIP Conference Proceedings, 2216:1 (2020), 020014 | DOI
[6] P. Patil, C. P. Vysasarayani, M. Ramji, “Linear least squares approach for evaluating crack tip fracture parameters using isochromatic and isoclinic data from digital photoelasticity”, Optics and Lasers in Engineering, 93 (2017), 182–194 | DOI
[7] M. V. Tabanyukhova, “Photoelastic analysis of the stressed state of a flat element with geometrical stress concentrators (cutout and cuts)”, Key Engineering Materials, 827 (2020), 330–335 | DOI
[8] L. V. Stepanova, “The algorithm for the determination of the Williams asymptotic expansion coefficients for notched semidiscs using the photoelasticity method and finite element method”, AIP Conference Proceedings, 2216 (2020), 020013 | DOI
[9] M. R. Ayatollahi, M. M. Mirsayar, M. Dehghany, “Experimental determination of stress field parameters in bi-material notches using photoelasticity”, Materials and Design, 2011, 4901–4908 | DOI
[10] B. Yang et al., “New algorithm for optimised fitting of DIC data to crack tip plastic zone using the CJP model”, Theoretical and applied Fracture Mechanics, 113:8 (2021), 102950 | DOI
[11] S.-M. Ham, T. H. Kwon, “Photoelastic observation of toughness-dominant hydraulic fracture propagation across an orthogonal discontinuity in soft, viscoelastic layered formation”, International Journal of Rock Mechanics and Mining Sciences, 134 (2020), 104438 | DOI
[12] Y. Li, K. Zheng, “Crack tip field coefficients analyses based on the extended finite element method using over-deterministic displacement field fitting method”, Theoretical and Applied Fracture Mechanics, 113 (2021), 102971 | DOI
[13] F. Su, B. Zhang, T. Li, “High speed stress measurement technique based on photoelastic modulator (PEM) and Galvano-scanner”, Optics and Lasers, 136 (2021), 106306 | DOI
[14] V. R. Ganesan, S. K. Mullick, “Digital image processing of photoelastic fringes a new approach”, Experimental techniques, 15:5 (2008), 41–46 | DOI
[15] P. Liu et al., “Visualization of full-field stress evolution during 3D penetrated crack propagation through 3D printing and frozen stress techniques”, Engineering Fracture Mechanics, 236 (2020), 107222 | DOI
[16] M. Pirmoradian et al., “Finite element analysis and experimental evaluation on stress distribution and sensitivity of dental implants to assess optimum length and thread pitch”, Computer methods and Programs in Biomedicine, 187 (2020), 105258 | DOI
[17] L. V. Stepanova, P. S. Roslyakov, “Complete Williams asymptotic expansion of the stress field near the crack tip: Analytical solutions, interference-optic methods and numerical experiments”, AIP Conference, 1785 (2016), 030029 | DOI
[18] G. Hello, M. B. Tahar, J. M. Roelandt, “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium”, International Journal of Solids and Structures, 49 (2012), 556–566 | DOI
[19] M. Sanchez et al., “Digital image correlation parameters optimized for characterization of fatigue crack growth”, Measurement, 174 (2021), 109082 | DOI
[20] K. Ramesh, S. Gupta, A. A. Kelkar, “Evaluation of stress field parameters in fracture mechanics by photoelasticity”, Engineering Fracture Mechanics, 56:1 (1997), 25–45 | DOI
[21] F. M. Solaguren-Beascoa, “Metrological consideration in the measurement of contact stress parameters using photoelasticity”, Optics and Lasers in Engineering, 117 (2019), 29–39 | DOI