Photoelastic study of a double edge notched plate for determination of the Williams series expansion
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 56-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, digital photoelasticity method is applied for assessment of the crack tip linear fracture mechanics parameters for a plate with double edge notches and different other crack configurations. The overarching objective of the study is to obtain the coefficients of the Williams series expansion for the stress and displacement fields in the vicinity of the crack tip by the digital photoelasticity technique for the double edge notched plate. The digital image processing tool for experimental data obtained from the photoelasticity experiments is developed and utilized. The digital image processing tool is based on the Ramesh approach but allows us to scan the image in any direction and to analyse the image after any number of logical operations. In the digital image processing isochromatic fringe analysis, the optical data contained in the transmission photoelastic isochromatics were converted into text file and then the points of isochromatic fringes with minimum light intensity were used for evaluating fracture mechanics parameters. The multi-parameter stress field approximation is used. The mixed mode fracture parameters, especially stress intensity factors (SIF) are estimated for specimen configurations like double edge notches and inclined center crack using the proposed algorithm based on the classical over-deterministic method. The effects of higher-order terms in the Williams expansion were analysed for different cracked specimens. It is shown that the higher order terms are needed for accurate characterization of the stress field in the vicinity of the crack tip. The experimental SIF values estimated using the proposed method are compared with analytical/finite element analysis (FEA) results, and are found to be in good agreement.
Keywords: сrack-tip fields, over deterministic method, finite element analysis, higher order terms, multi-parameter stress field presentation, digital photoelasticity, digital image processing.
@article{VSGU_2020_26_4_a5,
     author = {L. V. Stepanova and K. N. Aldebeneva},
     title = {Photoelastic study of a double edge notched plate for determination of the {Williams} series expansion},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {56--67},
     year = {2020},
     volume = {26},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a5/}
}
TY  - JOUR
AU  - L. V. Stepanova
AU  - K. N. Aldebeneva
TI  - Photoelastic study of a double edge notched plate for determination of the Williams series expansion
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2020
SP  - 56
EP  - 67
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a5/
LA  - en
ID  - VSGU_2020_26_4_a5
ER  - 
%0 Journal Article
%A L. V. Stepanova
%A K. N. Aldebeneva
%T Photoelastic study of a double edge notched plate for determination of the Williams series expansion
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2020
%P 56-67
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a5/
%G en
%F VSGU_2020_26_4_a5
L. V. Stepanova; K. N. Aldebeneva. Photoelastic study of a double edge notched plate for determination of the Williams series expansion. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 56-67. http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a5/

[1] K. Ramesh, T. Kasimayan, B. N. Simon, “Digital photoelasticity A comprehensive review”, The Journal of Strain Analysis for Engineering Design, 46:4 (2011), 245–266 | DOI

[2] K. Ramesh, S. Sasikumar, “Digital photoelasticity: Recent developments and diverse applications”, Optics and Lasers in Engineering, 135 (2020), 106186 | DOI

[3] T. M. Jobin, S. N. Khaderi, M. Ramji, “Experimental evaluation of the strain intensity factor at the inclusion tip using digital photoelasticity”, Optics and Lasers in Engineering, 126 (2020), 105855 | DOI

[4] A. Vivekanandan, K. Ramesh, “Study of interaction effects of asymmetric cracks under biaxial loading using digital photoelasticity”, Theoretical and Applied Fracture Mechanics, 99 (2019), 104–117 | DOI

[5] V. S. Dolgikh, L. V. Stepanova, “A photoelastic and numeric study of the stress field in the vicinity of two interacting cracks: Stress intensity factors, T-stresses and higher order terms”, AIP Conference Proceedings, 2216:1 (2020), 020014 | DOI

[6] P. Patil, C. P. Vysasarayani, M. Ramji, “Linear least squares approach for evaluating crack tip fracture parameters using isochromatic and isoclinic data from digital photoelasticity”, Optics and Lasers in Engineering, 93 (2017), 182–194 | DOI

[7] M. V. Tabanyukhova, “Photoelastic analysis of the stressed state of a flat element with geometrical stress concentrators (cutout and cuts)”, Key Engineering Materials, 827 (2020), 330–335 | DOI

[8] L. V. Stepanova, “The algorithm for the determination of the Williams asymptotic expansion coefficients for notched semidiscs using the photoelasticity method and finite element method”, AIP Conference Proceedings, 2216 (2020), 020013 | DOI

[9] M. R. Ayatollahi, M. M. Mirsayar, M. Dehghany, “Experimental determination of stress field parameters in bi-material notches using photoelasticity”, Materials and Design, 2011, 4901–4908 | DOI

[10] B. Yang et al., “New algorithm for optimised fitting of DIC data to crack tip plastic zone using the CJP model”, Theoretical and applied Fracture Mechanics, 113:8 (2021), 102950 | DOI

[11] S.-M. Ham, T. H. Kwon, “Photoelastic observation of toughness-dominant hydraulic fracture propagation across an orthogonal discontinuity in soft, viscoelastic layered formation”, International Journal of Rock Mechanics and Mining Sciences, 134 (2020), 104438 | DOI

[12] Y. Li, K. Zheng, “Crack tip field coefficients analyses based on the extended finite element method using over-deterministic displacement field fitting method”, Theoretical and Applied Fracture Mechanics, 113 (2021), 102971 | DOI

[13] F. Su, B. Zhang, T. Li, “High speed stress measurement technique based on photoelastic modulator (PEM) and Galvano-scanner”, Optics and Lasers, 136 (2021), 106306 | DOI

[14] V. R. Ganesan, S. K. Mullick, “Digital image processing of photoelastic fringes a new approach”, Experimental techniques, 15:5 (2008), 41–46 | DOI

[15] P. Liu et al., “Visualization of full-field stress evolution during 3D penetrated crack propagation through 3D printing and frozen stress techniques”, Engineering Fracture Mechanics, 236 (2020), 107222 | DOI

[16] M. Pirmoradian et al., “Finite element analysis and experimental evaluation on stress distribution and sensitivity of dental implants to assess optimum length and thread pitch”, Computer methods and Programs in Biomedicine, 187 (2020), 105258 | DOI

[17] L. V. Stepanova, P. S. Roslyakov, “Complete Williams asymptotic expansion of the stress field near the crack tip: Analytical solutions, interference-optic methods and numerical experiments”, AIP Conference, 1785 (2016), 030029 | DOI

[18] G. Hello, M. B. Tahar, J. M. Roelandt, “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium”, International Journal of Solids and Structures, 49 (2012), 556–566 | DOI

[19] M. Sanchez et al., “Digital image correlation parameters optimized for characterization of fatigue crack growth”, Measurement, 174 (2021), 109082 | DOI

[20] K. Ramesh, S. Gupta, A. A. Kelkar, “Evaluation of stress field parameters in fracture mechanics by photoelasticity”, Engineering Fracture Mechanics, 56:1 (1997), 25–45 | DOI

[21] F. M. Solaguren-Beascoa, “Metrological consideration in the measurement of contact stress parameters using photoelasticity”, Optics and Lasers in Engineering, 117 (2019), 29–39 | DOI