Computer simulation of crack growth. Molecular dynamics method
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 44-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of the study is to determine the stress intensity factors using molecular dynamics (MD) method. In the course of the study, a computer simulation of the propagation of a central crack in a copper plate was carried out. The simulation was performed in the LAMMPS (Large-scale Atomic / Molecular Massively Parallel Simulator) software package. A comprehensive study of the influence of geometric characteristics (model dimensions, crack length), temperature, strain rate and loading mixing parameter on the plate strength, crack growth and direction was carried out. The article proposes a method for determining the coefficients of the asymptotic expansion of M. Williams' stress fields. The analysis of the influence of the choice of points on the calculation of the coefficients and the comparison of the results obtained with the analytical solution are carried out.
Keywords: molecular dynamics method, crack propogation, mixed-mode loading.
@article{VSGU_2020_26_4_a4,
     author = {O. N. Belova and L. V. Stepanova and D. V. Chapliy},
     title = {Computer simulation of crack growth. {Molecular} dynamics method},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {44--55},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a4/}
}
TY  - JOUR
AU  - O. N. Belova
AU  - L. V. Stepanova
AU  - D. V. Chapliy
TI  - Computer simulation of crack growth. Molecular dynamics method
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2020
SP  - 44
EP  - 55
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a4/
LA  - ru
ID  - VSGU_2020_26_4_a4
ER  - 
%0 Journal Article
%A O. N. Belova
%A L. V. Stepanova
%A D. V. Chapliy
%T Computer simulation of crack growth. Molecular dynamics method
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2020
%P 44-55
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a4/
%G ru
%F VSGU_2020_26_4_a4
O. N. Belova; L. V. Stepanova; D. V. Chapliy. Computer simulation of crack growth. Molecular dynamics method. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 44-55. http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a4/

[1] C. Thaulow, “Application of CTOD in atomistic modeling of fracture”, Procedia Materials Science, 2014, no. 3, 1542–1547 | DOI

[2] M. F. Horstemeyer, J. Lim, W. Y. Lu, D. A. Mosher, M. I. Baskes, V. C. Prantil, S. J. Plimpton, “Torsion/Simple Shear of Single Crystal Copper”, ASME. Journal of Engineering Materials and Technology, 124:3 (2002), 322–328 | DOI

[3] L. Malikova, “Multi-parameter fracture criteria for the estimation of crack propagation direction applied to a mixed-mode geometry”, Engineering Fracture Mechanics, 143 (2015), 32–46 | DOI

[4] L. Malikova, V. Vesely, S. Seitl, “Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria”, International Journal of Fatigue, 89 (2016), 99–107 | DOI

[5] L. Malikova, V. Vesely, “Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria”, Frattura ed Integrita Strutturale, 33 (2015), 25–32 | DOI

[6] L. Malikova, V. Vesely, “Influence of the elastic mismatch on crack propagation in a silicate-based composite”, Theoretical and Applied Fracture Mechanics, 91 (2017), 25–30 | DOI

[7] P. Patil, C. P. Vyasarayani, M. Ramji, “Linear least squares approach for evaluating crack tip fracture parameters using isochromatic and isoclinic data from digital photoelasticity”, Optics and Lasers in Engineering, 93 (2017), 182–194 | DOI

[8] M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plates in extension”, Journal of Applied Mechanics, 74 (1952), 526–528 http://authors.library.caltech.edu/47672/1/382785.pdf | DOI

[9] M. L. Williams, “On the stress distribution at the base of a stationary crack”, Trans. ASME. Journal of Applied Mechanics, 24 (1957), 109–114 https://core.ac.uk/reader/33111630 | DOI | Zbl

[10] G. Hello, M. B. Tahar, J.-M. Roelandt, “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium”, International Journal of Solids and Structures, 49 (2012), 556–566 | DOI

[11] L. V. Stepanova, “Asymptotic Analysis of the Crack Tip Stress Field (Consideration of Higher Order Terms)”, Numerical Analysis and Applications, 22:3 (2019), 284–296 | DOI | DOI

[12] J. Sobek, P. Frantik, V. Vesely, “Analysis of accuracy of Williams series approximation of stress field in cracked body influence of area of interest around crack-tip on multi-parameter regression performance”, Frattura ed Integrita Structurale, 39:11 (2017), 129–142 | DOI

[13] L. V. Stepanova, “Experimental determination and finite element analysis of coefficients of the multi-parameter williams series expansion in the vicinity of the crack tip in linear elastic materials. Part I”, PNRPU Mechanics Bulletin, 2020, no. 4, 237–249 | DOI

[14] O. N. Belova, L. V. Stepanova, “Determination of the coefficients of asymptotic crack tip stress expansion”, Mixed mode loading of the plate. Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 26:3 (2020), 40–62

[15] M. A. Wilson, S. J. Grutzik, M. Chandross, “Continuum stress intensity factors from atomistic fracture simulations”, Computer Methods in Applied Mechanics and Engineering, 354 (2019), 732–749 | DOI | Zbl

[16] C.H. Ersland, C. Thaulow, I.R. Vatne, E. Ostby, “Atomistic modeling of micromechanisms and T-stress effects in fracture of iron Ostby”, Engineering Fracture Mechanics, 79 (2012), 180–190 | DOI

[17] G. H. Lee, H. G. Beom, “Mixed-mode fracture toughness testing of a Cu/Ag bimetallic interface via atomistic simulations”, Computational Materials Science, 2020, no. 183, 109806 | DOI

[18] Website of LAMMPS Molecular Dynamics Simulator

[19] Website of NIST Interatomic Potentials Repository Project

[20] C. F. Shih, Elastic-plastic analysis of combined mode crack problems, PhD Thesis, Harvard University, 1973

[21] Website of Supercomputing Center of Samara University (In Russ.)

[22] Website of OVITO Open Visualization Tool