Mots-clés : nonlocal conditions
@article{VSGU_2020_26_4_a3,
author = {V. A. Kirichek},
title = {About solvability of one problem with nonlocal conditions for hyperbolic equation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {36--43},
year = {2020},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a3/}
}
TY - JOUR AU - V. A. Kirichek TI - About solvability of one problem with nonlocal conditions for hyperbolic equation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2020 SP - 36 EP - 43 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a3/ LA - ru ID - VSGU_2020_26_4_a3 ER -
V. A. Kirichek. About solvability of one problem with nonlocal conditions for hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 36-43. http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a3/
[1] J. R. Cannon, “The solution of the heat equation subject to the specification of energy”, Quarterly of Applied Mathematics, 21:2 (1963), 155–160 | DOI
[2] L. I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 33–59 | DOI
[3] L. S. Pulkina, “A nonclassical problem for a degenerate hyperbolic equation”, Soviet Mathematics (Izvestiya VUZ. Matematika), 35:11 (1991), 48–51 (In Russ.)
[4] L. S. Pulkina, “Certain nonlocal problem for a degenerate hyperbolic equation”, Mathematical Notes, 51:3 (1992), 286–290 | DOI | Zbl
[5] V. A. Il'in, E. I. Moiseev, “Uniqueness of the solution of a mixed problem for the wave equation with nonlocal boundary conditions”, Differential Equations, 36:5 (2000), 728–733 | DOI
[6] L. S. Pul'kina, “A Mixed Problem with Integral Condition for the Hyperbolic Equation”, Mathematical Notes, 74:3 (2003), 411–421 | DOI | DOI
[7] L. S. Pulkina, “Initial-boundary value problem with a nonlocal boundary condition for a multi-dimensional hyperbolic equation”, Differential Equations, 44:8 (2008), 1119–1125 (In Russ.) | DOI
[8] N. L. Lazetic, “On the classical solvability of the mixed problem for a second-order one-dimensional hyperbolic equation”, Differential Equations, 42:8 (2006), 1134–1139 | DOI | Zbl
[9] L. S. Pulkina, Problems with nonclassical conditions for hyperbolic equations, Izdatel'stvo «Samarskii universitet», Samara, 2012, 194 pp. (In Russ.)
[10] A. I. Kozhanov, L. S. Pul'kina, “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differential Equations, 42:9 (2006), 1233–1246 | DOI | Zbl
[11] L. S. Pulkina, “Nonlocal problems for hyperbolic equations with degenerate integral condition”, Electronic Journal of Differential Equations, 2016 (2016), 193 | Zbl
[12] L. S. Pulkina, V. A. Kirichek, “Solvability of a nonlocal problem for a hyperbolic equation with degenerate integral conditions”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 23:2 (2019), 229–245 (In Russ.) | DOI | Zbl
[13] O. A. Ladyzhenskaya, Boundary problems of mathematical physics, Nauka, M., 1973, 407 pp. (In Russ.)