About solvability of one problem with nonlocal conditions for hyperbolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 36-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we consider a nonlocal problem with integral condition of the second kind for hyperbolic equation. The choice of a method for investigating problems with nonlocal conditions of the second kind depends on the type of nonintegral terms. In this article we consider the case when the nonintegral term is a trace of required function on the boundary of the domain. To investigate the solvability of the problem we use method of reduction for loaded equation with homogeneous boundary conditions. This method proved to be effective for defining a generalized solution, to obtain apriori estimates and to prove existence of unique generalized solution of the given problem.
Keywords: hyperbolic equation, integral conditions of the II kind, loaded equation.
Mots-clés : nonlocal conditions
@article{VSGU_2020_26_4_a3,
     author = {V. A. Kirichek},
     title = {About solvability of one problem with nonlocal conditions for hyperbolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {36--43},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a3/}
}
TY  - JOUR
AU  - V. A. Kirichek
TI  - About solvability of one problem with nonlocal conditions for hyperbolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2020
SP  - 36
EP  - 43
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a3/
LA  - ru
ID  - VSGU_2020_26_4_a3
ER  - 
%0 Journal Article
%A V. A. Kirichek
%T About solvability of one problem with nonlocal conditions for hyperbolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2020
%P 36-43
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a3/
%G ru
%F VSGU_2020_26_4_a3
V. A. Kirichek. About solvability of one problem with nonlocal conditions for hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 36-43. http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a3/

[1] J. R. Cannon, “The solution of the heat equation subject to the specification of energy”, Quarterly of Applied Mathematics, 21:2 (1963), 155–160 | DOI

[2] L. I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 33–59 | DOI

[3] L. S. Pulkina, “A nonclassical problem for a degenerate hyperbolic equation”, Soviet Mathematics (Izvestiya VUZ. Matematika), 35:11 (1991), 48–51 (In Russ.)

[4] L. S. Pulkina, “Certain nonlocal problem for a degenerate hyperbolic equation”, Mathematical Notes, 51:3 (1992), 286–290 | DOI | Zbl

[5] V. A. Il'in, E. I. Moiseev, “Uniqueness of the solution of a mixed problem for the wave equation with nonlocal boundary conditions”, Differential Equations, 36:5 (2000), 728–733 | DOI

[6] L. S. Pul'kina, “A Mixed Problem with Integral Condition for the Hyperbolic Equation”, Mathematical Notes, 74:3 (2003), 411–421 | DOI | DOI

[7] L. S. Pulkina, “Initial-boundary value problem with a nonlocal boundary condition for a multi-dimensional hyperbolic equation”, Differential Equations, 44:8 (2008), 1119–1125 (In Russ.) | DOI

[8] N. L. Lazetic, “On the classical solvability of the mixed problem for a second-order one-dimensional hyperbolic equation”, Differential Equations, 42:8 (2006), 1134–1139 | DOI | Zbl

[9] L. S. Pulkina, Problems with nonclassical conditions for hyperbolic equations, Izdatel'stvo «Samarskii universitet», Samara, 2012, 194 pp. (In Russ.)

[10] A. I. Kozhanov, L. S. Pul'kina, “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differential Equations, 42:9 (2006), 1233–1246 | DOI | Zbl

[11] L. S. Pulkina, “Nonlocal problems for hyperbolic equations with degenerate integral condition”, Electronic Journal of Differential Equations, 2016 (2016), 193 | Zbl

[12] L. S. Pulkina, V. A. Kirichek, “Solvability of a nonlocal problem for a hyperbolic equation with degenerate integral conditions”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 23:2 (2019), 229–245 (In Russ.) | DOI | Zbl

[13] O. A. Ladyzhenskaya, Boundary problems of mathematical physics, Nauka, M., 1973, 407 pp. (In Russ.)