Symmetric finite representability of $\ell^p$ in Orlicz spaces
    
    
  
  
  
      
      
      
        
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 15-24
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is well known that a Banach space need not contain any subspace isomorphic to a space $\ell^p$ $(1\le p\infty)$ or $c^0$ (it was shown by Tsirel'son in 1974). At the same time, by the famous Krivine's theorem, every Banach space $X$ always contains at least one of these spaces locally, i.e., there exist finite-dimensional subspaces of $X$ of arbitrarily large dimension $n$ which are isomorphic (uniformly) to $\ell_p^n$ for some $1\le p\infty$ or $c_0^n$. In this case one says that $\ell^p$ (resp. $c^0$) is finitely representable in $X$. The main purpose of this paper is to give a characterization (with a complete proof) of the set of $p$ such that $\ell^p$ is symmetrically finitely representable in a separable Orlicz space.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
$\ell^p$-space, finite representability of $\ell^p$-spaces, symmetric finite representability of $\ell^p$-spaces, Orlicz function space, Orlicz sequence space, Matuszewska-Orlicz indices.
                    
                    
                    
                  
                
                
                @article{VSGU_2020_26_4_a1,
     author = {S. V. Astashkin},
     title = {Symmetric finite representability of $\ell^p$ in {Orlicz} spaces},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {15--24},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a1/}
}
                      
                      
                    TY - JOUR AU - S. V. Astashkin TI - Symmetric finite representability of $\ell^p$ in Orlicz spaces JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2020 SP - 15 EP - 24 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a1/ LA - en ID - VSGU_2020_26_4_a1 ER -
S. V. Astashkin. Symmetric finite representability of $\ell^p$ in Orlicz spaces. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 15-24. http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a1/
