Symmetric finite representability of $\ell^p$ in Orlicz spaces
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 15-24

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that a Banach space need not contain any subspace isomorphic to a space $\ell^p$ $(1\le p\infty)$ or $c^0$ (it was shown by Tsirel'son in 1974). At the same time, by the famous Krivine's theorem, every Banach space $X$ always contains at least one of these spaces locally, i.e., there exist finite-dimensional subspaces of $X$ of arbitrarily large dimension $n$ which are isomorphic (uniformly) to $\ell_p^n$ for some $1\le p\infty$ or $c_0^n$. In this case one says that $\ell^p$ (resp. $c^0$) is finitely representable in $X$. The main purpose of this paper is to give a characterization (with a complete proof) of the set of $p$ such that $\ell^p$ is symmetrically finitely representable in a separable Orlicz space.
Keywords: $\ell^p$-space, finite representability of $\ell^p$-spaces, symmetric finite representability of $\ell^p$-spaces, Orlicz function space, Orlicz sequence space, Matuszewska-Orlicz indices.
@article{VSGU_2020_26_4_a1,
     author = {S. V. Astashkin},
     title = {Symmetric finite representability of $\ell^p$ in {Orlicz} spaces},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {15--24},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a1/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - Symmetric finite representability of $\ell^p$ in Orlicz spaces
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2020
SP  - 15
EP  - 24
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a1/
LA  - en
ID  - VSGU_2020_26_4_a1
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T Symmetric finite representability of $\ell^p$ in Orlicz spaces
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2020
%P 15-24
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a1/
%G en
%F VSGU_2020_26_4_a1
S. V. Astashkin. Symmetric finite representability of $\ell^p$ in Orlicz spaces. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 15-24. http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a1/