Symmetric finite representability of $\ell^p$ in Orlicz spaces
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 15-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that a Banach space need not contain any subspace isomorphic to a space $\ell^p$ $(1\le p\infty)$ or $c^0$ (it was shown by Tsirel'son in 1974). At the same time, by the famous Krivine's theorem, every Banach space $X$ always contains at least one of these spaces locally, i.e., there exist finite-dimensional subspaces of $X$ of arbitrarily large dimension $n$ which are isomorphic (uniformly) to $\ell_p^n$ for some $1\le p\infty$ or $c_0^n$. In this case one says that $\ell^p$ (resp. $c^0$) is finitely representable in $X$. The main purpose of this paper is to give a characterization (with a complete proof) of the set of $p$ such that $\ell^p$ is symmetrically finitely representable in a separable Orlicz space.
Keywords: $\ell^p$-space, finite representability of $\ell^p$-spaces, symmetric finite representability of $\ell^p$-spaces, Orlicz function space, Orlicz sequence space, Matuszewska-Orlicz indices.
@article{VSGU_2020_26_4_a1,
     author = {S. V. Astashkin},
     title = {Symmetric finite representability of $\ell^p$ in {Orlicz} spaces},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {15--24},
     year = {2020},
     volume = {26},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a1/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - Symmetric finite representability of $\ell^p$ in Orlicz spaces
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2020
SP  - 15
EP  - 24
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a1/
LA  - en
ID  - VSGU_2020_26_4_a1
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T Symmetric finite representability of $\ell^p$ in Orlicz spaces
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2020
%P 15-24
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a1/
%G en
%F VSGU_2020_26_4_a1
S. V. Astashkin. Symmetric finite representability of $\ell^p$ in Orlicz spaces. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 15-24. http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a1/

[1] Tsirel'son B.S., “Not every Banach space contains an imbedding of $\ell^p$ or $c^0$”, Functional Analysis and Its Applications, 8:2 (1974), 138–141 | DOI | Zbl

[2] Krivine J.L., “Sous-espaces de dimension finie des espaces de Banach réticulés”, Annals of Mathematics, 104:2 (1976), 1–29 https://www.irif.fr/k̃rivine/articles/Espaces_reticules.pdf | DOI | Zbl

[3] Rosenthal H.P., “On a theorem of J.L. Krivine concerning block finite representability of $\ell^p$ in general Banach spaces”, Journal of Functional Analysis, 28 (1978), 197–225 | DOI | Zbl

[4] Albiac F., Kalton N.J., Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer-Verlag, New York, 2006, 373 pp. | DOI | Zbl

[5] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolation of linear operators, Nauka, M., 1978, 400 pp. (In Russ.)

[6] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. II, Function Spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1979, 243 pp. https://1lib.education/book/2307307/8b833b?dsource=recommend | Zbl

[7] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. I, Sequence Spaces, Springer-Verlag, Berlin–New York, 1977, 190 pp. https://1lib.education/book/2264754/01841c?dsource=recommend | Zbl

[8] Astashkin S.V., “On the finite representability of $\ell^p$-spaces in rearrangement invariant spaces”, St. Petersburg Math. J., 23:2 (2012), 257–273 | DOI | Zbl

[9] Krasnoselskii M.A., Rutickii Ya.B., Convex functions and Orlicz spaces, Gos. izd. fiz.-mat. lit., M., 1958, 271 pp. (In Russ.)

[10] Rao M.M., Ren Z.D., Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker Inc., New York, 1991, 445 pp. | Zbl

[11] Maligranda L., Orlicz Spaces and Interpolation, Seminars in Mathematics, 5, University of Campinas, Campinas, 1989, 206 pp. | Zbl

[12] Lindenstrauss Y., Tzafriri L., “On Orlicz sequence spaces. III”, Israel Journal of Mathematics, 14 (1973), 368–389 | DOI | Zbl

[13] Rudin W., Functional Analysis, Mir, M., 1975, 443 pp.