Tricomi problem for multidimensional mixed hyperbolic-parabolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 7-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that in mathematical modeling of electromagnetic fields in space, the nature of the electromagnetic process is determined by the properties of the media. If the medium is non-conducting, then we obtain multidimensional hyperbolic equations. If the medium’s conductivity is higher, then we arrive at multidimensional parabolic equations. Consequently, the analysis of electromagnetic fields in complex media (for example, if the conductivity of the medium changes) reduces to multidimensional hyperbolic-parabolic equations. When studying these applications, one needs to obtain an explicit representation of solutions to the problems under study. Boundary-value problems for hyperbolic-parabolic equations on a plane are well studied; however, their multidimensional analogs have been analyzed very little. The Tricomi problem for the above equations has been previously investigated, but this problem in space has not been studied earlier. This article shows that the Tricomi problem is not uniquely solvable for a multidimensional mixed hyperbolic-parabolic equation. An explicit form of these solutions is given.
Keywords: Tricomi problem, multidimensional equation, solvability, spherical functions.
@article{VSGU_2020_26_4_a0,
     author = {S. A. Aldashev},
     title = {Tricomi problem for multidimensional mixed hyperbolic-parabolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--14},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a0/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - Tricomi problem for multidimensional mixed hyperbolic-parabolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2020
SP  - 7
EP  - 14
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a0/
LA  - ru
ID  - VSGU_2020_26_4_a0
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T Tricomi problem for multidimensional mixed hyperbolic-parabolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2020
%P 7-14
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a0/
%G ru
%F VSGU_2020_26_4_a0
S. A. Aldashev. Tricomi problem for multidimensional mixed hyperbolic-parabolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 4, pp. 7-14. http://geodesic.mathdoc.fr/item/VSGU_2020_26_4_a0/

[1] A. N. Tikhonov, A. A. Samarskii, Equations of mathematical physics, Nauka, M., 1977, 659 pp. (In Russ.)

[2] A. V. Bitsadze, Some classes of partial differential equations, Nauka, M., 1981, 448 pp. (In Russ.)

[3] A. M. Nakhushev, Problems with displacement for partial differential equations, Nauka, M., 2006, 287 pp. (In Russ.)

[4] S. G. Mikhlin, Multidimensional singular integrals and integral equations, Fizmatgiz, M., 1962, 254 pp. (In Russ.)

[5] S. A. Aldashev, “Nonuniqueness of the solution of the Tricomi problem for a multidimensional hyperbolic-parabolic equation”, Differential Equations, 50:4 (2014), 541–545 | DOI | DOI | Zbl

[6] A. V. Bitsadze, Mixed-type equations, Izd. AN SSSR, M., 1959, 164 pp. (In Russ.)

[7] S. A. Aldashev, Boundary value problems for multidimensional hyperbolic and mixed equations, Gylym, Almaty, 1994, 170 pp. (In Russ.)

[8] E. T. Copson, “On the Riemann-Green function”, J. Rath. Mech and Anal., 1 (1958), 324–348 | DOI | Zbl

[9] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integrals and derivatives of fractional order and some of their applications, Nauka i tekhnika, Minsk, 1987, 688 pp. (In Russ.)

[10] E. Kamke, Handbook of ordinary differential equations, Nauka, M., 1965, 703 pp. (In Russ.)

[11] H. Bateman, A. Erdelyi, Higher Transcendental Functions, v. 1, Nauka, M., 1973, 294 pp. (In Russ.)

[12] H. Bateman, A. Erdelyi, Higher Transcendental Functions, v. 2, Nauka, M., 1974, 295 pp. (In Russ.)