Determination of the coefficients of asymptotic crack — tip stress expansion. Mixed mode loading of the plate
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 3, pp. 40-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of the study is to calculate the coefficients of M. Williams' asymptotic expansion of stress and displacement fields using the data of finite element modeling of a plate with an inclined central crack in a uniaxial tension field. In this work, we also simulated the loading of a half-disk with a vertical and oblique notch under conditions of three-point bending. The simulation was carried out in the multifunctional software SIMULIA Abaqus. The paper proposes an algorithm for calculating the coefficients. The program, written in the MAPLE computer algebra system, allows calculating any predetermined number of M. Williams expansion coefficients (amplitude or scale factors) and uses the values of the stress tensor components at points in the vicinity of the crack and their coordinates as input. The analysis of the influence of the number of calculated coefficients on the accuracy of their determination is carried out. Recommendations on the choice of points for calculating the coefficients are given.
Keywords: stress field, crack, mixed loading, expansion coefficients M. Williams, finite element modeling.
@article{VSGU_2020_26_3_a3,
     author = {O. N. Belova and L. V. Stepanova},
     title = {Determination of the coefficients of asymptotic crack {\textemdash} tip stress expansion. {Mixed} mode loading of the plate},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {40--62},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_3_a3/}
}
TY  - JOUR
AU  - O. N. Belova
AU  - L. V. Stepanova
TI  - Determination of the coefficients of asymptotic crack — tip stress expansion. Mixed mode loading of the plate
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2020
SP  - 40
EP  - 62
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2020_26_3_a3/
LA  - ru
ID  - VSGU_2020_26_3_a3
ER  - 
%0 Journal Article
%A O. N. Belova
%A L. V. Stepanova
%T Determination of the coefficients of asymptotic crack — tip stress expansion. Mixed mode loading of the plate
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2020
%P 40-62
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2020_26_3_a3/
%G ru
%F VSGU_2020_26_3_a3
O. N. Belova; L. V. Stepanova. Determination of the coefficients of asymptotic crack — tip stress expansion. Mixed mode loading of the plate. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 3, pp. 40-62. http://geodesic.mathdoc.fr/item/VSGU_2020_26_3_a3/

[1] L. M. Kachanov, Fundamentals of fracture mechanics, Nauka, M., 1974, 312 pp. (In Russ.) https://lib-bkm.ru/13776

[2] V. M. Pestrikov, E. M. Morozov, Fracture mechanics of solids, course of lectures, Professiia, Saint Petersburg, 2012, 552 pp.

[3] M. Kachanov, B. Shafiro, I. Tsukrov, Handbook of elasticity solutions, Springer, Berlin, 2003, 324 pp. | DOI

[4] N. Recho, Fracture Mechanics and Crack Growth, Willey, Hoboken, 2012, 493 pp. | DOI

[5] M. L. Williams, “Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension”, Journal of Applied Mechanics, 74 (1952), 526–528 https://authors.library.caltech.edu/47672/1/382785.pdf | DOI

[6] M. L. Williams, “On the stress distribution at the base of a stationary crack”, Journal of Applied Mechanics, 24:1 (1956), 109–114 https://authors.library.caltech.edu/47558/1/382747.pdf | DOI

[7] G. Hello, M. B. Tahar, J. M. Roelandt, “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium”, International Journal of Solids and Structures, 49:3-4 (2012), 556–566 | DOI

[8] L. V. Stepanova, S. A. Igonin, “Asymptotics of the near-crack-tip stress field of a growing fatigue crack in damaged materials: Numerical experiment and analytical solution”, Numerical Analysis and Applications, 8:2 (2015), 168–181 | DOI | Zbl

[9] G. Hello, “Derivation of complete crack-tip stress expansions from Westergaard-Sanford solutions”, International Journal of Solids and Structures, 144–145 (2018), 265–275 | DOI

[10] L. V. Stepanova, P. S. Roslyakov, “Complete asymptotic expansion of M. Williams near the tips of collinear cracks of equal length in an infinite plane medium”, PNRPU Mechanics Bulletin, 4 (2015), 188–225 | DOI

[11] M. Nejati, S. Ghouli, M. Ayatollahi, “Crack tip asymptotic fields in anisotropic planes: Importance of higher order terms”, Applied Mathematical Modelling, 91 (2021), 837–862 | DOI

[12] L. V. Stepanova, “Asymptotic Analysis of the Crack Tip Stress Field (Consideration of Higher Order Terms)”, Numerical Analysis and Applications, 12:3 (2019), 284–296 | DOI | DOI

[13] J. Sobek, P. Frantik, V. Vesely, “Analysis of accuracy of Williams series approximation of stress field in cracked body influence of area of interest around crack-tip on multi-parameter regression performance”, Frattura ed Integrita Strutturale, 39:1 (2017), 129–142 | DOI

[14] L. Malikova, “Multi-parameter fracture criteria for the estimation of crack propagation direction applied to a mixed-mode geometry”, Engineering Fracture Mechanics, 143 (2015), 32–46 | DOI

[15] L. Malikova, V. Vesely, S. Seitl, “Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria”, International Journal of Fatigue, 89 (2016), 99–107 | DOI

[16] L. Malikova, V. Vesely, “Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria”, Frattura ed Integrita Strutturale, 33 (2015), 25–32 | DOI

[17] L. Malikova, V. Vesely, “Influence of the elastic mismatch on crack propagation in a silicate-based composite”, Theoretical and Applied Fracture Mechanics, 91 (2017), 25–30 | DOI

[18] V. Vesely, J. Sobek, S. Seitl, “Multi-parameter approximation of the stress field in a cracked body in the more distant surrounding of the crack tip”, International Journal of Fatigue, 89 (2016), 20–35 | DOI

[19] V. I. Astafiev, J. N. Radaev, L. V. Stepanova, Nonlinear fracture mechanics, Izdatel'stvo “Samarskii universitet”, Samara, 2001, 562 pp. (In Russ.)

[20] P. Patil, C. P. Vyasarayani, M. Ramji, “Linear least squares approach for evaluating crack tip fracture parameters using isochromatic and isoclinic data from digital photoelasticity”, Optics and Lasers in Engineering, 93 (2017), 182–194 | DOI