Problems of differential and topological diagnostics. Part 5. The case of trajectorial measurements with error
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 3, pp. 30-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Proposed work is the fifth work of the cycle on differential and topological diagnostics. The article gives an estimate of the errors method of direction fields in the case of not accurate trajectory measurements, but trajectory measurements with an error are limited by the modulus of a given a smooth function of time, and in case this error is a random variable distributed according to the normal law with fixed parameters. We show that in these more complex cases, you can specify the “best” number of required trajectory measurements, in which the proposed algorithms of diagnostics will work constructively, and the malfunction will be determined unambiguously.
Keywords: diagnostic problem, diagnostic algorithms, trajectory measurements with error.
@article{VSGU_2020_26_3_a2,
     author = {M. V. Shamolin},
     title = {Problems of differential and topological diagnostics. {Part} 5. {The} case of trajectorial measurements with error},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {30--39},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_3_a2/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Problems of differential and topological diagnostics. Part 5. The case of trajectorial measurements with error
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2020
SP  - 30
EP  - 39
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2020_26_3_a2/
LA  - ru
ID  - VSGU_2020_26_3_a2
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Problems of differential and topological diagnostics. Part 5. The case of trajectorial measurements with error
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2020
%P 30-39
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2020_26_3_a2/
%G ru
%F VSGU_2020_26_3_a2
M. V. Shamolin. Problems of differential and topological diagnostics. Part 5. The case of trajectorial measurements with error. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 3, pp. 30-39. http://geodesic.mathdoc.fr/item/VSGU_2020_26_3_a2/

[1] M. V. Shamolin, “Problems of differential and topological diagnostics. Part 1. Motion equations and classification of malfunctions”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 25:1 (2019), 32–43 (In Russ.) | DOI | Zbl

[2] M. V. Shamolin, “Problems of differential and topological diagnostics. Part 2. Problem of differential diagnostics”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 25:3 (2019), 22–31 (In Russ.) | DOI

[3] M. V. Shamolin, “Problems of differential and topological diagnostics. Part 3. The checking problem”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 25:4 (2019), 36–47 (In Russ.) | DOI | Zbl

[4] M. V. Shamolin, “Problems of differential and topological diagnostics. Part 4. The case of exact trajectorial measurements”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 26:1 (2020), 52–68 | DOI | Zbl

[5] I. T. Borisenok, M. V. Shamolin, “Resolving a problem of differential diagnostics”, Fundamental and Applied Mathematics, 5:3 (1999), 775–790 (In Russ.) | Zbl

[6] M. V. Shamolin, Certain Problems of differential and topological diagnostics, Edition 2nd, revised and enlarged, Ekzamen, M., 2007 (In Russ.) http://eqworld.ipmnet.ru/ru/library/books/Shamolin2007-2ru.pdf

[7] M. V. Shamolin, “Foundations of Differential and Topological Diagnostics”, Journal of Mathematical Sciences, 114:1 (2003), 976–1024 | DOI | Zbl

[8] P. P. Parkhomenko, E. S. Sagomonian, Foundations of technical diagnostics, Energiia, M., 1981, 464 pp. (In Russ.)

[9] L. A. Mironovskii, “Functional diagnosis of dynamic systems”, Automation and Remote Control, 1980, no. 8, 96–121 (In Russ.)

[10] Yu. M. Okunev, N. A. Parusnikov, Structural and algorithmic aspects of modeling for control problems, Izd-vo MGU, M., 1983 (In Russ.)

[11] M. G. Chikin, “Phase-constrained systems”, Automation and Remote Control, 1987, no. 10, 38–46 (In Russ.) | Zbl

[12] V. P. Zhukov, “Sufficient and necessary conditions for the asymptotic stability of nonlinear dynamical systems”, Automation and Remote Control, 55:3 (1994), 321–330 | Zbl

[13] V. P. Zhukov, “On the sufficient and necessary conditions for robustness of the nonlinear dynamic systems in terms of stability retention”, Automation and Remote Control, 69:1 (2008), 27–35 | DOI | Zbl

[14] V. P. Zhukov, “Reduction of Stability Study of Nonlinear Dynamic Systems by the Second Lyapunov Method”, Automation and Remote Control, 66:12 (2005), 1916–1928 | DOI | Zbl

[15] I. T. Borisenok, M. V. Shamolin, “Solving the problem of differential diagnostics by the method of statistical tests”, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2001, no. 1, 29–31 (In Russ.) | Zbl

[16] A. Beck, M. Teboulle, “Mirror Descent and Nonlinear Projected Subgradient Methods for Convex Optimization”, Operations Research Letters, 31:3 (2003), 167–175 | DOI | Zbl

[17] A. Ben-Tal, T. Margalit, A. Nemirovski, “The Ordered Subsets Mirror Descent Optimization Method with Applications to Tomography”, SIAM J. Optim., 12:1 (2001), 79–108 | DOI | Zbl

[18] W. Su, S. Boyd, E. Candes, “A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights”, J. Machine Learning Res., 153:17 (2016), 1–43, arXiv: 1503.01243

[19] M. V. Shamolin, “Diagnostics of gyro-stabilized platform, included in the aircraft motion control system”, Electronic Modeling, 33:3 (2011), 121–126 (In Russ.)

[20] M. V. Shamolin, “Diagnostics of Aircraft Motion in Planning Descent Mode”, Electronic Modeling, 32:5 (2010), 31–44 (In Russ.) http://dspace.nbuv.gov.ua/bitstream/handle/123456789/61677/04-Shamolin1.pdf?sequence=1

[21] W. H. Fleming, “Optimal Control of Partially Observable Diffusions”, SIAM Journal on Control, 6:2 (1968), 194–214 | DOI | Zbl

[22] D. H. Choi, S. H. Kim, D. K. Sung, “Energy-efficient Maneuvering and Communication of a Single UAV-based Relay”, IEEE Transactions on Aerospace and Electronic Systems, 50:3 (2014), 2320–2327 | DOI

[23] D.-T. Ho, E. I. Grotli, P. B. Sujit, T. A. Johansen, J. B. Sousa, “Optimization of Wireless Sensor Network and UAV Data Acquisition”, Journal of Intelligent Robotic Systems, 78:1 (2015), 159–179 | DOI

[24] C. Ceci, A. Gerardi, P. Tardelli, “Existence of Optimal Controls for Partially Observed Jump Processes”, Acta Applicandae Mathematica, 74:2 (2002), 155–175 | DOI | Zbl

[25] U. Rieder, J. Winter, “Optimal control of Markovian jump processes with partial information and applications to a parallel queueing model”, Mathematical Methods of Operations Research, 70 (2009), 567–596 | DOI | Zbl

[26] M. Chiang et al., “Power Control in Wireless Cellular Networks”, Foundations and Trends in Networking, 2:4 (2008), 381–533 https://www.princeton.edu/c̃hiangm/powercontrol.pdf | DOI

[27] E. Altman et al., “Power control in wireless cellular networks”, IEEE Trans. Autom. Contr., 54:10 (2009), 2328–2340 | DOI | Zbl

[28] R. J. Ober, “Balanced parameterization of classes of linear systems”, SIAM Journal on Control and Optimization, 29:6 (1991), 1251–1287 | DOI | Zbl

[29] R. J. Ober, D. McFarlane, “Balanced canonical forms for minimal systems: a normalized coprime factor approach”, Linear Algebra and its Applications, 122–124 (1989), 23–64 | DOI | Zbl

[30] A. C. Antoulas, D. C. Sorensen, Y. Zhou, “On the decay rate of Hankel singular values and related issues”, Systems Control Letters, 46:5 (2002), 323–342 | DOI | Zbl

[31] D. A. Wilson, “The Hankel operator and its induced norms”, International Journal of Control, 42:1 (1985), 65–70 | DOI | Zbl

[32] B. D.O. Anderson, E. I. Jury, M. Mansour, “Schwarz matrix properties for continuous and discrete time systems”, International Journal of Control, 23:1 (1976), 1–16 | DOI | Zbl