Mots-clés : nonlocal equation, oblique derivative, Poisson equation, existence
@article{VSGU_2020_26_3_a0,
author = {K. Zh. Nazarova and B. Kh. Turmetov and K. I. Usmanov},
title = {On the solvability of some boundary value problems with involution},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {7--16},
year = {2020},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_3_a0/}
}
TY - JOUR AU - K. Zh. Nazarova AU - B. Kh. Turmetov AU - K. I. Usmanov TI - On the solvability of some boundary value problems with involution JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2020 SP - 7 EP - 16 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGU_2020_26_3_a0/ LA - ru ID - VSGU_2020_26_3_a0 ER -
%0 Journal Article %A K. Zh. Nazarova %A B. Kh. Turmetov %A K. I. Usmanov %T On the solvability of some boundary value problems with involution %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2020 %P 7-16 %V 26 %N 3 %U http://geodesic.mathdoc.fr/item/VSGU_2020_26_3_a0/ %G ru %F VSGU_2020_26_3_a0
K. Zh. Nazarova; B. Kh. Turmetov; K. I. Usmanov. On the solvability of some boundary value problems with involution. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 3, pp. 7-16. http://geodesic.mathdoc.fr/item/VSGU_2020_26_3_a0/
[1] T. Carleman, “Sur la theorie des equations integrales et ses applications”, Verhandlungen des Internationalen Mathematiker-Kongresse Zurich, v. 1, 1932, 132–151 https://studylibfr.com/doc/1054399/sur-la-th
[2] N. Karapetiants, S. Samko, Equations with Involutive Operators, Birkhäuser, Boston, 2001, 427 pp. | DOI | Zbl
[3] G. S. Litvinchuk, Boundary value problems and singular integral equations with shift, Nauka, M., 1977, 448 pp. (In Russ.)
[4] A. A. Andreev, “Analogs of Classical Boundary Value Problems for a Second-Order Differential Equation with Deviating Argument”, Differential Equations, 40 (2004), 1192–1194 | DOI | Zbl
[5] A. A. Andreev, E. N. Ogorodnikov, “On the formulation and substantiation of the well-posedness of the initial boundary value problem for a class of nonlocal degenerate equations of hyperbolic type”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2006, no. 43, 44–51 (In Russ.) | DOI
[6] A. G. Baskakov, N. B. Uskova, “Fourier method for first order differential equations with involution and groups of operators”, Ufa Mathematical Journal, 10:3 (2018), 11–34 | DOI | Zbl
[7] M. Sh. Burlutskaya, A. P. Khromov, “Classical solution of a mixed problem with involution”, Doklady Mathematics, 82 (2010), 865–868 | DOI | Zbl
[8] M. Sh. Burlutskaya, A. P. Khromov, “Substantiation of Fourier method in mixed problem with involution”, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 11:4 (2011), 3–12 (In Russ.) | DOI
[9] A. V. Linkov, “Substantiation of a method the Fourier for boundary value problems with an involute deviation”, Vestnik of Samara State University. Natural Science Series, 12:2 (1999), 60–65 (In Russ.)
[10] A. V. Bitsadze, A. A. Samarskii, “Some elementary generalizations of linear elliptic boundary value problems”, Dokl. Akad. Nauk SSSR, 185:4 (1969), 739–740 (In Russ.) | Zbl
[11] A. L. Skubachevskii, “Nonclassical boundary value problems. I”, Journal of Mathematical Sciences, 155 (2008), 199 | DOI | Zbl
[12] A. L. Skubachevskii, “Nonclassical boundary value problems. II”, Journal of Mathematical Sciences, 166:4 (2010), 377–561 | DOI | Zbl
[13] V. V. Karachik, A. Sarsenbi, B. Kh. Turmetov, “On the solvability of the main boundary value problems for a nonlocal Poisson equation”, Turkish Journal of Mathematics, 43:3 (2019), 1604–1625 | DOI | Zbl
[14] V. V. Karachik, B. Kh. Turmetov, “Solvability of one nonlocal Dirichlet problem for the Poisson equation”, Novi Sad Journal of Mathematics, 50:1 (2020), 67–88 | DOI | Zbl
[15] D. Przeworska-Rolewicz, “Some boundary value problems with transformed argument”, Commentationes Mathematicae, 17 (1974), 451–457 http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.ojs-doi10_14708_cm_v17i2_5790/c/5790-5331.pdf | Zbl
[16] V. V. Karachik, B. Kh. Turmetov, “On solvability of some nonlocal boundary value problems for polyharmonic equation”, Kazakh Mathematical Journal, 19:1 (2019), 39–49 | Zbl
[17] Sh. A. Alimov, “On a problem with an oblique derivative”, Differential Equations, 17:10 (1981), 1738–1751 (In Russ.)
[18] Sh. A. Alimov, “On a boundary value problem”, Doklady Mathematics, 252:5 (1980), 1033–1034 (In Russ.) | Zbl