Dynamic problem for a thin-walled bar with a monosymmetric profile
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 2, pp. 63-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents an analytical solution to the dynamic problem for a thin-walled elastic rod, the cross-section of which has one axis of symmetry. The solution is constructed for an arbitrary dynamic load and two types of boundary conditions: hinged support in constrained torsion and free warping of the end sections of the rod; rigid fastening with constrained torsion and absence of warping. The peculiarity of the mathematical model lies in the fact that the differential equations of motion contain a complete system of inertial terms. Spectral expansions obtained as a result of using the method of integral transformations are represented as an effective method for solving linear non-stationary problems in mechanics. The structural algorithm of the method of finite multicomponent integral transformations proposed by Yu.E. Senitsky is used.
Keywords: thin-walled bar, symmetric profile, boundary value problem, dynamic load, natural vibrations, natural vibration frequency, forced vibrations, integral transformations.
@article{VSGU_2020_26_2_a4,
     author = {T. B. Elekina and E. S. Vronskaya},
     title = {Dynamic problem for a thin-walled bar with a monosymmetric profile},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {63--69},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a4/}
}
TY  - JOUR
AU  - T. B. Elekina
AU  - E. S. Vronskaya
TI  - Dynamic problem for a thin-walled bar with a monosymmetric profile
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2020
SP  - 63
EP  - 69
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a4/
LA  - ru
ID  - VSGU_2020_26_2_a4
ER  - 
%0 Journal Article
%A T. B. Elekina
%A E. S. Vronskaya
%T Dynamic problem for a thin-walled bar with a monosymmetric profile
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2020
%P 63-69
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a4/
%G ru
%F VSGU_2020_26_2_a4
T. B. Elekina; E. S. Vronskaya. Dynamic problem for a thin-walled bar with a monosymmetric profile. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 2, pp. 63-69. http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a4/

[1] Panovko Ia.G., Foundations of the applied theory of vibrations and impact, 3rd edition, enlarged and revised, «Mashinostroenie» (Leningr. otd-nie), L., 1976, 320 pp. (In Russ.)

[2] Beylin A. B., Pulkina L. S., “A problem on vibration of a bar with unknown boundary condition on a part of the boundary”, Vestnik of Samara University. Natural Science Series, 23:2 (2017), 7–14 (In Russ.) | DOI | MR

[3] Bogatov A. V., “Problem with an integral condition for one-dimensional hyperbolic equation”, Vestnik of Samara University. Natural Science Series, 24:4 (2018), 7–12 (In Russ.) | DOI | MR | Zbl

[4] Pavlov V. P., Nusratullina L. R., “Natural bending vibrations of naturally twisted rod”, Vestnik USATU, 23:4 (86) (2019), 33–41

[5] Kagan-Rosenzweig L. M., “The method for calculating the natural frequencies of elastic rods by application of direct integration of differential bending equation”, Bulletin of Civil Engineers, 2019, no. 1 (72), 61–66 (In Russ.) | DOI

[6] Senitskii Yu.E., “A multicomponent generalized finite integral transformation and its application to nonstationary problems in mechanics”, Soviet Mathematics (Izvestiya VUZ. Matematika, 35:4 (1991), 55–61 | MR

[7] Senitskii Yu.E., “Convergence and uniqueness of representations defined by a formula for the inversion of a multicomponent generalized finite integral transformation”, Soviet Mathematics (Izvestiya VUZ. Matematika, 35:9 (1991), 52–54 | MR

[8] Vlasov V. Z., Thin-walled elastic rods, Gos. izdat. fiz.-mat. literatury, M., 1971, 380 pp. (In Russ.)

[9] Senitskii Yu.E., Studying the elastic deformation of structural elements under dynamic loads using the finite transform method, SGU, Saratov, 1985, 176 pp. (In Russ.) https://dwg.ru/lib/864

[10] Senitsky Yu.E., “Finite integral transformations method: generalization of classic procedure for eigenvector decomposition”, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 11:3 (1) (2011), 61–98 (In Russ.) | DOI