Dynamic problem for a thin-walled bar with a monosymmetric profile
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 2, pp. 63-69
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper presents an analytical solution to the dynamic problem for a thin-walled elastic rod, the cross-section of which has one axis of symmetry. The solution is constructed for an arbitrary dynamic load and two types of boundary conditions: hinged support in constrained torsion and free warping of the end sections of the rod; rigid fastening with constrained torsion and absence of warping. The peculiarity of the mathematical model lies in the fact that the differential equations of motion contain a complete system of inertial terms. Spectral expansions obtained as a result of using the method of integral transformations are represented as an effective method for solving linear non-stationary problems in mechanics. The structural algorithm of the method of finite multicomponent integral transformations proposed by Yu.E. Senitsky is used.
Keywords:
thin-walled bar, symmetric profile, boundary value problem, dynamic load, natural vibrations, natural vibration frequency, forced vibrations, integral transformations.
@article{VSGU_2020_26_2_a4,
author = {T. B. Elekina and E. S. Vronskaya},
title = {Dynamic problem for a thin-walled bar with a monosymmetric profile},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {63--69},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a4/}
}
TY - JOUR AU - T. B. Elekina AU - E. S. Vronskaya TI - Dynamic problem for a thin-walled bar with a monosymmetric profile JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2020 SP - 63 EP - 69 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a4/ LA - ru ID - VSGU_2020_26_2_a4 ER -
%0 Journal Article %A T. B. Elekina %A E. S. Vronskaya %T Dynamic problem for a thin-walled bar with a monosymmetric profile %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2020 %P 63-69 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a4/ %G ru %F VSGU_2020_26_2_a4
T. B. Elekina; E. S. Vronskaya. Dynamic problem for a thin-walled bar with a monosymmetric profile. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 2, pp. 63-69. http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a4/