@article{VSGU_2020_26_2_a4,
author = {T. B. Elekina and E. S. Vronskaya},
title = {Dynamic problem for a thin-walled bar with a monosymmetric profile},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {63--69},
year = {2020},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a4/}
}
TY - JOUR AU - T. B. Elekina AU - E. S. Vronskaya TI - Dynamic problem for a thin-walled bar with a monosymmetric profile JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2020 SP - 63 EP - 69 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a4/ LA - ru ID - VSGU_2020_26_2_a4 ER -
T. B. Elekina; E. S. Vronskaya. Dynamic problem for a thin-walled bar with a monosymmetric profile. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 2, pp. 63-69. http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a4/
[1] Panovko Ia.G., Foundations of the applied theory of vibrations and impact, 3rd edition, enlarged and revised, «Mashinostroenie» (Leningr. otd-nie), L., 1976, 320 pp. (In Russ.)
[2] Beylin A. B., Pulkina L. S., “A problem on vibration of a bar with unknown boundary condition on a part of the boundary”, Vestnik of Samara University. Natural Science Series, 23:2 (2017), 7–14 (In Russ.) | DOI | MR
[3] Bogatov A. V., “Problem with an integral condition for one-dimensional hyperbolic equation”, Vestnik of Samara University. Natural Science Series, 24:4 (2018), 7–12 (In Russ.) | DOI | MR | Zbl
[4] Pavlov V. P., Nusratullina L. R., “Natural bending vibrations of naturally twisted rod”, Vestnik USATU, 23:4 (86) (2019), 33–41
[5] Kagan-Rosenzweig L. M., “The method for calculating the natural frequencies of elastic rods by application of direct integration of differential bending equation”, Bulletin of Civil Engineers, 2019, no. 1 (72), 61–66 (In Russ.) | DOI
[6] Senitskii Yu.E., “A multicomponent generalized finite integral transformation and its application to nonstationary problems in mechanics”, Soviet Mathematics (Izvestiya VUZ. Matematika, 35:4 (1991), 55–61 | MR
[7] Senitskii Yu.E., “Convergence and uniqueness of representations defined by a formula for the inversion of a multicomponent generalized finite integral transformation”, Soviet Mathematics (Izvestiya VUZ. Matematika, 35:9 (1991), 52–54 | MR
[8] Vlasov V. Z., Thin-walled elastic rods, Gos. izdat. fiz.-mat. literatury, M., 1971, 380 pp. (In Russ.)
[9] Senitskii Yu.E., Studying the elastic deformation of structural elements under dynamic loads using the finite transform method, SGU, Saratov, 1985, 176 pp. (In Russ.) https://dwg.ru/lib/864
[10] Senitsky Yu.E., “Finite integral transformations method: generalization of classic procedure for eigenvector decomposition”, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 11:3 (1) (2011), 61–98 (In Russ.) | DOI