The effect of metal alloy microstructure on the thickness distribution in the circular plate under the superplastic blow-forming
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 2, pp. 50-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The gas-blow forming of sheet specimens under the superplastic conditions is the widespread and intensive developing technological method for metal-forming of modern alloys (mainly on the aluminium and titanium base). The investigation of evolution of the microstructure parameters in the deformation process is necessary to obtain the defect-free constructions with required mechanical properties. In the present paper the blow-forming process of the thin circular plate to the hemispherical form is modelled. The stress-strain relations used include the parameters of the grain size and of the hardening depending on the accumulated plastic strain. It is shown that taking into account the evolution of the microstructure parameters in the superplastic deformation can significantly improve the estimation of the optimal characteristics of the manufacturing process and eventually can provide the most thickness-uniform engineering product.
Keywords: superplasticity, metal alloys, pressure metal forming, sheet-metal forming, round plates, influence of microstructure, grain size.
Mots-clés : microstructure evolution
@article{VSGU_2020_26_2_a3,
     author = {T. A. Beliakova and I. A. Goncharov},
     title = {The effect of metal alloy microstructure on the thickness distribution in the circular plate under the superplastic blow-forming},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {50--62},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a3/}
}
TY  - JOUR
AU  - T. A. Beliakova
AU  - I. A. Goncharov
TI  - The effect of metal alloy microstructure on the thickness distribution in the circular plate under the superplastic blow-forming
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2020
SP  - 50
EP  - 62
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a3/
LA  - ru
ID  - VSGU_2020_26_2_a3
ER  - 
%0 Journal Article
%A T. A. Beliakova
%A I. A. Goncharov
%T The effect of metal alloy microstructure on the thickness distribution in the circular plate under the superplastic blow-forming
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2020
%P 50-62
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a3/
%G ru
%F VSGU_2020_26_2_a3
T. A. Beliakova; I. A. Goncharov. The effect of metal alloy microstructure on the thickness distribution in the circular plate under the superplastic blow-forming. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 2, pp. 50-62. http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a3/

[1] Vasin R. A., Enikeev F. U., Introduction to the mechanics of superplasticity, v. 1, Gilem, Ufa, 1998, 280 pp. (In Russ.)

[2] Padmanabhan K. A., Vasin R. A., Enikeev F. U., Superplastic Flow: Phenomenology and Mechanics, Springer-Verlag, Berlin–Heidelberg, 2001, 363 pp. | DOI

[3] Nieh T. G., Wadsworth J., Sherby O. D., Superplasticity in metals and ceramics, Cambridge University Press, NY, 1997, 287 pp. | DOI

[4] Grabski M., Structural superplasticity of metals, Metallurgiia, M., 1975, 272 pp. (In Russ.)

[5] Mulyukov R. R., Imaeva R. M., Nazarova A. A., Imaeva M. F., Imaeva V. M., Superplasticity of the ultrafine-grained alloys: experiment, theory, technology, Nauka, M., 2014, 284 pp. (In Russ.)

[6] Leyens C., Peters M., Titanium and Titanium Alloys, WILEY-VCH Verlag GmbH Co. KGaA, Weinheim, 2003, 513 pp.

[7] Cornfield G. C., Johnson R. H., “The forming of superplastic sheet metal”, International Journal of Mechanical Sciences, 12:6 (1970), 479–490 | DOI

[8] Cheong B. H., Lin J., Ball A. A., “Modelling the effect of grain-size gradients on necking in superplastic forming”, Journal of Materials Processing Technology, 134:1 (2003), 10–18 | DOI

[9] Feodosev V. I., Strength of materials, Izd-vo MGTU im. N.E. Baumana, M., 1999, 592 pp. (In Russ.)

[10] Guo Z. X., Ridley N., “Modelling of Superplastic Bulge Forming of Domes”, Materials Science and Engineering: A, 114 (1989), 97–104 | DOI

[11] Yang H. S., Mukherjee A. K., “An analysis of the superplastic forming of a circular sheet diaphragm”, International Journal of Mechanical Sciences, 34:4 (1992), 283–297 | DOI

[12] Jovane F., “An approximate analysis of the superplastic forming of a thin circular diaphragm: Theory and experiments”, International Journal of Mechanical Sciences, 10:5 (1968), 403–427 | DOI

[13] Enikeev F. U., Kruglov A. A., “An analysis of the superplastic forming of a thin circular diaphragm”, International Journal of Mechanical Sciences, 37:5 (1995), 473–483 | DOI

[14] Ghosh A. K., Hamilton C. H., “Influences of material parameters and microstructure on superplastic forming”, Metallurgical Transactions A, 13 (1982), 733–743 | DOI

[15] Lin J., Dunne F. P.E., “Modelling grain growth evolution and necking in superplastic blow-forming”, International Journal of Mechanical Sciences, 43:3 (2001), 595–609 | DOI | Zbl

[16] Lin J., Dean T. A., “Modelling of microstructure evolution in hot forming using unified constitutive equations”, Journal of Materials Processing Technology, 167:2–3 (2005), 354–362 | DOI

[17] Goncharov I. A., Beliakova T. A., “The methods of estimating the accuracy and stability of the algorithm for determination of values of the parameters in superplasticity models”, Computational Continuum Mechanics, 11:1 (2018), 51–67 (In Russ.) | DOI

[18] Ghosh A. K., Hamilton C. H., “Mechanical behavior and hardening characteristics of a superplastic Ti-6Al-4V alloy”, Metallurgical Transactions A, 10 (1979), 699–706 | DOI