Keywords: dynamic boundry conditions, hyperbolic equation, generalized solution, smoothness of solution.
@article{VSGU_2020_26_2_a1,
author = {V. A. Kirichek},
title = {On smoothness of solution of one nonlocal problem for hyperbolic equation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {15--22},
year = {2020},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a1/}
}
TY - JOUR AU - V. A. Kirichek TI - On smoothness of solution of one nonlocal problem for hyperbolic equation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2020 SP - 15 EP - 22 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a1/ LA - ru ID - VSGU_2020_26_2_a1 ER -
V. A. Kirichek. On smoothness of solution of one nonlocal problem for hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 2, pp. 15-22. http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a1/
[1] Tikhonov A. N., Samarskiy A. A., Equations of mathematical physics, Nauka, M., 2004, 798 pp. | MR
[2] Skubachevskii A. L., Steblov G. M., “On the spectrum of differential operators with a domain that is not dense in $L_2{0,1}$”, Dokl. Akad. Nauk USSR, 321:6 (1991), 1158–1163 (In Russ.) | Zbl
[3] Ionkin N. I., “The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition”, Differential Equations, 13:2 (1977), 294–304 (In Russ.) | MR | Zbl
[4] Rogozhnikov A. M., “On various types of boundary conditions for the one-dimensional equation of oscillations”, Collection of articles of young scientists of the faculty of Computational Mathematics and Cybernetics of MSU, 10, 2013, 188–214 (In Russ.)
[5] Kirichek V. A., “Problem with nonlocal boundary condition for a hyperbolic equation”, Vestnik of Samara University. Natural Science Series, 2017, no. 3, 26–33 | MR | Zbl
[6] Korpusov M. O., Destruction in nonclassical wave equations, URSS, M., 2010, 240 pp. (In Russ.)
[7] Beylin A. B., Pulkina L. S., “Task on longitudinal vibrations of a rod with dynamic boundary conditions”, Vestnik of Samara State University, 2014, no. 3 (114), 9–19 (In Russ.) | Zbl
[8] Doronin G. G., Lar'kin N. A., Souza A. J., “A hyperbolic problem with nonlinear second-order boundary damping”, EJDE, 28 (1998), 1–10 | MR
[9] Andrews K. T., Kuttler K. L., Shillor M., “Second order evolution equations with dynamic boundary conditions”, J. Math. Anal. Appl., 197:3 (1996), 781–795 | DOI | MR | Zbl
[10] Beilin A. B., Pulkin L. S., “A problem on longitudinal vibration in a short bar with dynamical boundary conditions”, Vestnik of Samara University. Natural Science Series, 2017, no. 4 (23), 7–18 (In Russ.) | DOI | MR
[11] T. Louw, S. Whitney, A. Subramanian, H. Viljoen, “Forced wawe motion with internal and boundary damping”, Journal of applied physics, 111 (2012), 014702–0147028 | DOI
[12] Pul'kina L. S., “A problem with dynamic nonlocal condition for pseudohyperbolic equation”, Russian Mathematics, 60:9 (2016), 38–45 | DOI | MR | Zbl
[13] Pulkina L. S., Beylin A. B., “Nonlocal approach to problems on longitudinal vibration in a short bar”, EJDE, 29 (2019), 1–9 https://ejde.math.txstate.edu/Volumes/2019/29/pulkina.pdf | MR