On boundary value problem for generalized Aller equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 2, pp. 7-14

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical models of fluid filtration processes in porous media with a fractal structure and memory are based on differential equations of fractional order in both time and space variables. The dependence of the soil water content can significantly affect the moisture transport in capillary-porous media. The paper investigates the generalized Aller equation widely used in mathematical modeling of the processes related to water table dynamics in view of fractal structure. As a mathematical model of the Aller equation with Riemann–Liouville fractional derivatives, a loaded fractional order equation is proposed, and a solution to the Goursat problem has been written out for this model in explicit form.
Mots-clés : Aller equation, Goursat problem, Laplace convolution.
Keywords: Riemann–Liouville fractional integrodifferential operator, moisture transfer equation, generalized Newton–Leibniz formula, loaded equation, Volterra equation of the second kind
@article{VSGU_2020_26_2_a0,
     author = {S.Kh. Gekkieva and M. M. Karmokov and M. A. Kerefov},
     title = {On boundary value problem for generalized {Aller} equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--14},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a0/}
}
TY  - JOUR
AU  - S.Kh. Gekkieva
AU  - M. M. Karmokov
AU  - M. A. Kerefov
TI  - On boundary value problem for generalized Aller equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2020
SP  - 7
EP  - 14
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a0/
LA  - ru
ID  - VSGU_2020_26_2_a0
ER  - 
%0 Journal Article
%A S.Kh. Gekkieva
%A M. M. Karmokov
%A M. A. Kerefov
%T On boundary value problem for generalized Aller equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2020
%P 7-14
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a0/
%G ru
%F VSGU_2020_26_2_a0
S.Kh. Gekkieva; M. M. Karmokov; M. A. Kerefov. On boundary value problem for generalized Aller equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 2, pp. 7-14. http://geodesic.mathdoc.fr/item/VSGU_2020_26_2_a0/