Refined analysis of steady state creep of a rotating disk and a plate with a central hole under uniform tensile load by the quazilinearization method
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 1, pp. 78-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Refined analysis of the steady state creep of a rotating disk and a plate with a central hole under uniform tensile load by the quasilinearization method is presented. It is shown that the high values of the creep exponent in power law constitutive equations require more iterations in the framework of the quasilinearization method in each problem. The approximation solution of the problem for an infinite plate with the circular hole under creep regime is obtained by the quazilinearization method. Four approximations of the solution of the nonlinear problems are found. It is shown that with increasing the number of approximations the solution converges to the limit numerical solution. It is worth to note that the tangential stress reaches its maximum value not at the circular hole but at the internal point of the plate. It is also shown that quazilinearization method is an effective method for nonlinear problems.
Keywords: quazilinearization method, plate comprehensively stretching, stress field in the neighborhood of crack tips, nonlinear problems, Beyley–Norton's power law, analytical solution.
@article{VSGU_2020_26_1_a5,
     author = {L. V. Stepanova and R. M. Zhabbarov},
     title = {Refined analysis of steady state creep of a rotating disk and a plate with a central hole under uniform tensile load by the quazilinearization method},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {78--94},
     year = {2020},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a5/}
}
TY  - JOUR
AU  - L. V. Stepanova
AU  - R. M. Zhabbarov
TI  - Refined analysis of steady state creep of a rotating disk and a plate with a central hole under uniform tensile load by the quazilinearization method
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2020
SP  - 78
EP  - 94
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a5/
LA  - ru
ID  - VSGU_2020_26_1_a5
ER  - 
%0 Journal Article
%A L. V. Stepanova
%A R. M. Zhabbarov
%T Refined analysis of steady state creep of a rotating disk and a plate with a central hole under uniform tensile load by the quazilinearization method
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2020
%P 78-94
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a5/
%G ru
%F VSGU_2020_26_1_a5
L. V. Stepanova; R. M. Zhabbarov. Refined analysis of steady state creep of a rotating disk and a plate with a central hole under uniform tensile load by the quazilinearization method. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 1, pp. 78-94. http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a5/

[1] L. V. Stepanova, R. M. Zhabbarov, “Quasilinearization method for the solution to the problem of plate with central circular hole under creep regime”, Vestnik of Samara University. Natural Science Series, 23:2 (2017), 44–50 (In Russ.) | MR | Zbl

[2] I.V. Andrianov et al., Nonlinear Mechanics and Physics of Materials, Springer, Cham, 2019, 530 pp. https://b-ok.global/book/3562550/0c6c6f | Zbl

[3] N. A. Kudryashov, Methods of nonlinear mathematical physics, Izdatel'skii domIntellekt, Dolgoprudny, 2010, 368 pp. (In Russ.)

[4] I. Andrianov, Ya. Avreytsevich, Methods of asymptotic analysis and synthesis in nonlinear dynamics and mechanics of a deformable rigid body, M., 2013, 276 pp. (In Russ.)

[5] R. E. Bellman, R. E. Kalaba, Quazilinearization and Nonlinear Boundary-Value Problems, American Elsevier Publishing Company, New-York, 1965, 184 pp. (In Russ.) | MR

[6] J. T. Boyle, J. Spence, Stress analysis for creep, Butterworth, London, 1983, 360 pp. (In Russ.)

[7] L. V. Stepanova, Mathematical methods of fracture mechanics, Samarskii universitet, Samara, 2006, 242 pp. (In Russ.)

[8] L. V. Stepanova, Mathematical methods of fracture mechanics, Fizmatlit, M., 2009, 336 pp. (In Russ.)

[9] L. V. Stepanova, “Eigenspectra and orders of stress singularity at a mode I crack tip for a power low medium”, Comptes Rendus Mechanique, 2008, no. 1-2, 232–237 | DOI | Zbl

[10] E. I. Shifrin, “Symmetry properties of the recipricity gap functional in the linear elasticity”, International Journal of Fracture, 159:2 (2009), 209–218 | DOI | MR | Zbl

[11] E. I. Shifrin, P. S. Shushpannikov, “Identification of a spheroidal defect in an elastic solid using a reciprocity gap functional”, Inverse problems, 26:5 (2010), 055001 | DOI | MR | Zbl

[12] E. I. Shifrin, P. S. Shushpannikov, “Identification of small well-separated defects in an isotropic elastic body using boundary measurements”, International Journal of Solids and Structures, 50:22-23 (2013), 3707–3716 | DOI | MR

[13] E. I. Shifrin, P. S. Shushpannikov, “Reconstruction of an ellipsoidal defect an anisotropic elastic solid, using results of one static test”, Inverse Problems in Science and Egineering, 21:5 (2013), 781–800 | DOI | MR | Zbl

[14] A. O. Vatulyan, O. V. Yavryan, I. V. Zhavoronkova, “Identifying the inhomogeneous properties of an elastic layer using the method of quasilinearization”, Izvestiya Vuzov. Severo-Kavkazskii Region. Natural Science, 2014, no. 3 (181), 27–32

[15] A. S. Yakimov, Analytical method of solution of boundary value problems, Natsional'nyi issledovatel'skii Tomskii gosudarstvennyi universitet, Tomsk, 2011, 199 pp. (In Russ.)

[16] S. M. Aznam, N. A.C. Ghani, M. S.H. Chowdhury, “A numerical solution for nonlinear heat transfer of fin problems using the Haar wavelet quasilinearization method”, Results in Physics, 14 (2019), 102393 | DOI

[17] M. Koleva, L. G. Vulkov, “Two-grid quasilinearization approach to ODEs with applications to model problems in physics and mechanics”, Computer Physics Communications, 181 (2010), 663–670 | DOI | MR | Zbl

[18] V. B. Mandelzweig, F. Tabakin, “Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs”, Computer Physics Communications, 141 (2001), 268–281 | DOI | MR | Zbl

[19] M. P. Mkhatshwa, S. S. Motsa, P. Sibanda, “Numerical solution of time-dependent Emden-Fowler equations using bivariate spectral collocation method on overlapping grid”, Nonlinear Engineering, 9 (2020), 299–318 | DOI

[20] W. Ibrahim, “Spectral quasilinearisation method for solution of convective heating condition”, Engineering Transations, 68:1 (2020), 69–87 | DOI

[21] S. S. Motsa, I. L. Animasaum, “Bivariate spectral quasi-linearisation exploration of heat transfer in the boundary layer flow of micropolar fluid with strongly concentrated particles over a surface at absolute zero due to impulsive”, International Journal of Computing Science and Mathematics, 2018, no. 9, 455–473 | DOI | MR | Zbl

[22] A. K. Verma, D. Tiwari, “Higher resolution methods based on quasilinearization and Haar wavelets on Lane-Emden equations”, International Journal of Wavelets, Multiresolution and Information Processing, 17:3 (2019) | DOI | MR

[23] D. Rani, V. Mishra, “Numerical inverse Laplace transform based on Bernoulli polynomials operational matrix for solving nonlinear differential equations”, Results in Physics, 16 (2020), 102836 | DOI

[24] M. P. Mkhatshwa, S. S. Motsa, P. Sibanda, “Overlapping multi-domain bivariate spectral method for systems of nonlinear PDEs with fluid mechanics applications”, Advances in Fluid Dynamics, Chapter 54, 685–699 | DOI