@article{VSGU_2020_26_1_a5,
author = {L. V. Stepanova and R. M. Zhabbarov},
title = {Refined analysis of steady state creep of a rotating disk and a plate with a central hole under uniform tensile load by the quazilinearization method},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {78--94},
year = {2020},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a5/}
}
TY - JOUR AU - L. V. Stepanova AU - R. M. Zhabbarov TI - Refined analysis of steady state creep of a rotating disk and a plate with a central hole under uniform tensile load by the quazilinearization method JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2020 SP - 78 EP - 94 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a5/ LA - ru ID - VSGU_2020_26_1_a5 ER -
%0 Journal Article %A L. V. Stepanova %A R. M. Zhabbarov %T Refined analysis of steady state creep of a rotating disk and a plate with a central hole under uniform tensile load by the quazilinearization method %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2020 %P 78-94 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a5/ %G ru %F VSGU_2020_26_1_a5
L. V. Stepanova; R. M. Zhabbarov. Refined analysis of steady state creep of a rotating disk and a plate with a central hole under uniform tensile load by the quazilinearization method. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 1, pp. 78-94. http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a5/
[1] L. V. Stepanova, R. M. Zhabbarov, “Quasilinearization method for the solution to the problem of plate with central circular hole under creep regime”, Vestnik of Samara University. Natural Science Series, 23:2 (2017), 44–50 (In Russ.) | MR | Zbl
[2] I.V. Andrianov et al., Nonlinear Mechanics and Physics of Materials, Springer, Cham, 2019, 530 pp. https://b-ok.global/book/3562550/0c6c6f | Zbl
[3] N. A. Kudryashov, Methods of nonlinear mathematical physics, Izdatel'skii domIntellekt, Dolgoprudny, 2010, 368 pp. (In Russ.)
[4] I. Andrianov, Ya. Avreytsevich, Methods of asymptotic analysis and synthesis in nonlinear dynamics and mechanics of a deformable rigid body, M., 2013, 276 pp. (In Russ.)
[5] R. E. Bellman, R. E. Kalaba, Quazilinearization and Nonlinear Boundary-Value Problems, American Elsevier Publishing Company, New-York, 1965, 184 pp. (In Russ.) | MR
[6] J. T. Boyle, J. Spence, Stress analysis for creep, Butterworth, London, 1983, 360 pp. (In Russ.)
[7] L. V. Stepanova, Mathematical methods of fracture mechanics, Samarskii universitet, Samara, 2006, 242 pp. (In Russ.)
[8] L. V. Stepanova, Mathematical methods of fracture mechanics, Fizmatlit, M., 2009, 336 pp. (In Russ.)
[9] L. V. Stepanova, “Eigenspectra and orders of stress singularity at a mode I crack tip for a power low medium”, Comptes Rendus Mechanique, 2008, no. 1-2, 232–237 | DOI | Zbl
[10] E. I. Shifrin, “Symmetry properties of the recipricity gap functional in the linear elasticity”, International Journal of Fracture, 159:2 (2009), 209–218 | DOI | MR | Zbl
[11] E. I. Shifrin, P. S. Shushpannikov, “Identification of a spheroidal defect in an elastic solid using a reciprocity gap functional”, Inverse problems, 26:5 (2010), 055001 | DOI | MR | Zbl
[12] E. I. Shifrin, P. S. Shushpannikov, “Identification of small well-separated defects in an isotropic elastic body using boundary measurements”, International Journal of Solids and Structures, 50:22-23 (2013), 3707–3716 | DOI | MR
[13] E. I. Shifrin, P. S. Shushpannikov, “Reconstruction of an ellipsoidal defect an anisotropic elastic solid, using results of one static test”, Inverse Problems in Science and Egineering, 21:5 (2013), 781–800 | DOI | MR | Zbl
[14] A. O. Vatulyan, O. V. Yavryan, I. V. Zhavoronkova, “Identifying the inhomogeneous properties of an elastic layer using the method of quasilinearization”, Izvestiya Vuzov. Severo-Kavkazskii Region. Natural Science, 2014, no. 3 (181), 27–32
[15] A. S. Yakimov, Analytical method of solution of boundary value problems, Natsional'nyi issledovatel'skii Tomskii gosudarstvennyi universitet, Tomsk, 2011, 199 pp. (In Russ.)
[16] S. M. Aznam, N. A.C. Ghani, M. S.H. Chowdhury, “A numerical solution for nonlinear heat transfer of fin problems using the Haar wavelet quasilinearization method”, Results in Physics, 14 (2019), 102393 | DOI
[17] M. Koleva, L. G. Vulkov, “Two-grid quasilinearization approach to ODEs with applications to model problems in physics and mechanics”, Computer Physics Communications, 181 (2010), 663–670 | DOI | MR | Zbl
[18] V. B. Mandelzweig, F. Tabakin, “Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs”, Computer Physics Communications, 141 (2001), 268–281 | DOI | MR | Zbl
[19] M. P. Mkhatshwa, S. S. Motsa, P. Sibanda, “Numerical solution of time-dependent Emden-Fowler equations using bivariate spectral collocation method on overlapping grid”, Nonlinear Engineering, 9 (2020), 299–318 | DOI
[20] W. Ibrahim, “Spectral quasilinearisation method for solution of convective heating condition”, Engineering Transations, 68:1 (2020), 69–87 | DOI
[21] S. S. Motsa, I. L. Animasaum, “Bivariate spectral quasi-linearisation exploration of heat transfer in the boundary layer flow of micropolar fluid with strongly concentrated particles over a surface at absolute zero due to impulsive”, International Journal of Computing Science and Mathematics, 2018, no. 9, 455–473 | DOI | MR | Zbl
[22] A. K. Verma, D. Tiwari, “Higher resolution methods based on quasilinearization and Haar wavelets on Lane-Emden equations”, International Journal of Wavelets, Multiresolution and Information Processing, 17:3 (2019) | DOI | MR
[23] D. Rani, V. Mishra, “Numerical inverse Laplace transform based on Bernoulli polynomials operational matrix for solving nonlinear differential equations”, Results in Physics, 16 (2020), 102836 | DOI
[24] M. P. Mkhatshwa, S. S. Motsa, P. Sibanda, “Overlapping multi-domain bivariate spectral method for systems of nonlinear PDEs with fluid mechanics applications”, Advances in Fluid Dynamics, Chapter 54, 685–699 | DOI